On one-sided interval edge colorings of biregular bipartite graphs

A proper edge \(t\)-coloring of a graph $G$ is a coloring of edges of\(G\) with colors \(1,2,\ldots,t\) such that all colors are used, and notwo adjacent edges receive the same color. The set of colors ofedges incident with a vertex \(x\) is called a spectrum of \(x\). Anynonempty subset of consecut...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Kamalian, Rafayel Ruben
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2015
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/46
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-46
record_format ojs
spelling admjournalluguniveduua-article-462015-09-28T11:22:08Z On one-sided interval edge colorings of biregular bipartite graphs Kamalian, Rafayel Ruben proper edge coloring, interval edge coloring, interval 05C15, 05C50, 05C85 A proper edge \(t\)-coloring of a graph $G$ is a coloring of edges of\(G\) with colors \(1,2,\ldots,t\) such that all colors are used, and notwo adjacent edges receive the same color. The set of colors ofedges incident with a vertex \(x\) is called a spectrum of \(x\). Anynonempty subset of consecutive integers is called an interval. Aproper edge \(t\)-coloring of a graph \(G\) is interval in the vertex$x$ if the spectrum of \(x\) is an interval. A proper edge\(t\)-coloring \(\varphi\) of a graph \(G\) is interval on a subset \(R_0\)of vertices of \(G\), if for any \(x\in R_0\), \(\varphi\) is interval in\(x\). A subset \(R\) of vertices of \(G\) has an \(i\)-property if there isa proper edge \(t\)-coloring of \(G\) which is interval on \(R\). If \(G\)is a graph, and a subset \(R\) of its vertices has an \(i\)-property,then the minimum value of \(t\) for which there is a proper edge\(t\)-coloring of \(G\) interval on \(R\) is denoted by \(w_R(G)\). We estimate the value of this parameter for biregular bipartite graphs in the case when \(R\) is one of the sides of a bipartition of the graph. Lugansk National Taras Shevchenko University 2015-09-28 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/46 Algebra and Discrete Mathematics; Vol 19, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/46/13 Copyright (c) 2015 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2015-09-28T11:22:08Z
collection OJS
language English
topic proper edge coloring
interval edge coloring
interval
05C15
05C50
05C85
spellingShingle proper edge coloring
interval edge coloring
interval
05C15
05C50
05C85
Kamalian, Rafayel Ruben
On one-sided interval edge colorings of biregular bipartite graphs
topic_facet proper edge coloring
interval edge coloring
interval
05C15
05C50
05C85
format Article
author Kamalian, Rafayel Ruben
author_facet Kamalian, Rafayel Ruben
author_sort Kamalian, Rafayel Ruben
title On one-sided interval edge colorings of biregular bipartite graphs
title_short On one-sided interval edge colorings of biregular bipartite graphs
title_full On one-sided interval edge colorings of biregular bipartite graphs
title_fullStr On one-sided interval edge colorings of biregular bipartite graphs
title_full_unstemmed On one-sided interval edge colorings of biregular bipartite graphs
title_sort on one-sided interval edge colorings of biregular bipartite graphs
description A proper edge \(t\)-coloring of a graph $G$ is a coloring of edges of\(G\) with colors \(1,2,\ldots,t\) such that all colors are used, and notwo adjacent edges receive the same color. The set of colors ofedges incident with a vertex \(x\) is called a spectrum of \(x\). Anynonempty subset of consecutive integers is called an interval. Aproper edge \(t\)-coloring of a graph \(G\) is interval in the vertex$x$ if the spectrum of \(x\) is an interval. A proper edge\(t\)-coloring \(\varphi\) of a graph \(G\) is interval on a subset \(R_0\)of vertices of \(G\), if for any \(x\in R_0\), \(\varphi\) is interval in\(x\). A subset \(R\) of vertices of \(G\) has an \(i\)-property if there isa proper edge \(t\)-coloring of \(G\) which is interval on \(R\). If \(G\)is a graph, and a subset \(R\) of its vertices has an \(i\)-property,then the minimum value of \(t\) for which there is a proper edge\(t\)-coloring of \(G\) interval on \(R\) is denoted by \(w_R(G)\). We estimate the value of this parameter for biregular bipartite graphs in the case when \(R\) is one of the sides of a bipartition of the graph.
publisher Lugansk National Taras Shevchenko University
publishDate 2015
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/46
work_keys_str_mv AT kamalianrafayelruben ononesidedintervaledgecoloringsofbiregularbipartitegraphs
first_indexed 2025-12-02T15:40:21Z
last_indexed 2025-12-02T15:40:21Z
_version_ 1850412161349713920