The \(R_{\infty}\) property for Houghton's groups
We study twisted conjugacy classes of a family of groups which are called Houghton's groups \(\mathcal{H}_n\) (\(n \in\mathbb{N}\)), the group of translations of \(n\) rays of discrete points at infinity. We prove that the Houghton's groups \(\mathcal{H}_n\) have the \(R_\infty\) property...
Збережено в:
| Дата: | 2017 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2017
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/466 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-466 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-4662017-07-02T21:58:40Z The \(R_{\infty}\) property for Houghton's groups Jo, Jang Hyun Lee, Jong Bum Lee, Sang Rae Houghton's group, \(R_\infty\) property, Reidemeister number 20E45, 20E36, 55M20 We study twisted conjugacy classes of a family of groups which are called Houghton's groups \(\mathcal{H}_n\) (\(n \in\mathbb{N}\)), the group of translations of \(n\) rays of discrete points at infinity. We prove that the Houghton's groups \(\mathcal{H}_n\) have the \(R_\infty\) property for all \(n\in \mathbb{N}\). Lugansk National Taras Shevchenko University 2017-07-03 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/466 Algebra and Discrete Mathematics; Vol 23, No 2 (2017) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/466/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/466/201 Copyright (c) 2017 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2017-07-02T21:58:40Z |
| collection |
OJS |
| language |
English |
| topic |
Houghton's group \(R_\infty\) property Reidemeister number 20E45 20E36 55M20 |
| spellingShingle |
Houghton's group \(R_\infty\) property Reidemeister number 20E45 20E36 55M20 Jo, Jang Hyun Lee, Jong Bum Lee, Sang Rae The \(R_{\infty}\) property for Houghton's groups |
| topic_facet |
Houghton's group \(R_\infty\) property Reidemeister number 20E45 20E36 55M20 |
| format |
Article |
| author |
Jo, Jang Hyun Lee, Jong Bum Lee, Sang Rae |
| author_facet |
Jo, Jang Hyun Lee, Jong Bum Lee, Sang Rae |
| author_sort |
Jo, Jang Hyun |
| title |
The \(R_{\infty}\) property for Houghton's groups |
| title_short |
The \(R_{\infty}\) property for Houghton's groups |
| title_full |
The \(R_{\infty}\) property for Houghton's groups |
| title_fullStr |
The \(R_{\infty}\) property for Houghton's groups |
| title_full_unstemmed |
The \(R_{\infty}\) property for Houghton's groups |
| title_sort |
\(r_{\infty}\) property for houghton's groups |
| description |
We study twisted conjugacy classes of a family of groups which are called Houghton's groups \(\mathcal{H}_n\) (\(n \in\mathbb{N}\)), the group of translations of \(n\) rays of discrete points at infinity. We prove that the Houghton's groups \(\mathcal{H}_n\) have the \(R_\infty\) property for all \(n\in \mathbb{N}\). |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2017 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/466 |
| work_keys_str_mv |
AT jojanghyun therinftypropertyforhoughtonsgroups AT leejongbum therinftypropertyforhoughtonsgroups AT leesangrae therinftypropertyforhoughtonsgroups AT jojanghyun rinftypropertyforhoughtonsgroups AT leejongbum rinftypropertyforhoughtonsgroups AT leesangrae rinftypropertyforhoughtonsgroups |
| first_indexed |
2025-12-02T15:40:22Z |
| last_indexed |
2025-12-02T15:40:22Z |
| _version_ |
1850412162861760512 |