The lattice of quasivarietes of modules over a Dedekind ring

In 1995 D. V. Belkin described the lattice of quasivarieties of modules over  principal ideal domains. The following paper provides a description of the lattice of subquasivarieties of the variety of modules over a given Dedekind ring. It also shows which subvarieties of these modules are deductive...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Jedlička, Přemysl, Matczak, Katarzyna, Mućka, Anna
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2019
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/487
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543153777016832
author Jedlička, Přemysl
Matczak, Katarzyna
Mućka, Anna
author_facet Jedlička, Přemysl
Matczak, Katarzyna
Mućka, Anna
author_sort Jedlička, Přemysl
baseUrl_str
collection OJS
datestamp_date 2019-04-09T04:54:46Z
description In 1995 D. V. Belkin described the lattice of quasivarieties of modules over  principal ideal domains. The following paper provides a description of the lattice of subquasivarieties of the variety of modules over a given Dedekind ring. It also shows which subvarieties of these modules are deductive (a variety is deductive if every subquasivariety is a variety).
first_indexed 2026-02-08T07:58:42Z
format Article
id admjournalluguniveduua-article-487
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:58:42Z
publishDate 2019
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-4872019-04-09T04:54:46Z The lattice of quasivarietes of modules over a Dedekind ring Jedlička, Přemysl Matczak, Katarzyna Mućka, Anna quasivarieties, lattices, modules, Dedekind rings 08A62; 08C15; 20N02; 20N05 In 1995 D. V. Belkin described the lattice of quasivarieties of modules over  principal ideal domains. The following paper provides a description of the lattice of subquasivarieties of the variety of modules over a given Dedekind ring. It also shows which subvarieties of these modules are deductive (a variety is deductive if every subquasivariety is a variety). Lugansk National Taras Shevchenko University 2019-03-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/487 Algebra and Discrete Mathematics; Vol 27, No 1 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/487/pdf Copyright (c) 2019 Algebra and Discrete Mathematics
spellingShingle quasivarieties
lattices
modules
Dedekind rings
08A62
08C15
20N02
20N05
Jedlička, Přemysl
Matczak, Katarzyna
Mućka, Anna
The lattice of quasivarietes of modules over a Dedekind ring
title The lattice of quasivarietes of modules over a Dedekind ring
title_full The lattice of quasivarietes of modules over a Dedekind ring
title_fullStr The lattice of quasivarietes of modules over a Dedekind ring
title_full_unstemmed The lattice of quasivarietes of modules over a Dedekind ring
title_short The lattice of quasivarietes of modules over a Dedekind ring
title_sort lattice of quasivarietes of modules over a dedekind ring
topic quasivarieties
lattices
modules
Dedekind rings
08A62
08C15
20N02
20N05
topic_facet quasivarieties
lattices
modules
Dedekind rings
08A62
08C15
20N02
20N05
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/487
work_keys_str_mv AT jedlickapremysl thelatticeofquasivarietesofmodulesoveradedekindring
AT matczakkatarzyna thelatticeofquasivarietesofmodulesoveradedekindring
AT muckaanna thelatticeofquasivarietesofmodulesoveradedekindring
AT jedlickapremysl latticeofquasivarietesofmodulesoveradedekindring
AT matczakkatarzyna latticeofquasivarietesofmodulesoveradedekindring
AT muckaanna latticeofquasivarietesofmodulesoveradedekindring