The lattice of quasivarietes of modules over a Dedekind ring
In 1995 D. V. Belkin described the lattice of quasivarieties of modules over principal ideal domains. The following paper provides a description of the lattice of subquasivarieties of the variety of modules over a given Dedekind ring. It also shows which subvarieties of these modules are deductive...
Збережено в:
| Дата: | 2019 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | Англійська |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2019
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/487 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| _version_ | 1856543153777016832 |
|---|---|
| author | Jedlička, Přemysl Matczak, Katarzyna Mućka, Anna |
| author_facet | Jedlička, Přemysl Matczak, Katarzyna Mućka, Anna |
| author_sort | Jedlička, Přemysl |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2019-04-09T04:54:46Z |
| description | In 1995 D. V. Belkin described the lattice of quasivarieties of modules over principal ideal domains. The following paper provides a description of the lattice of subquasivarieties of the variety of modules over a given Dedekind ring. It also shows which subvarieties of these modules are deductive (a variety is deductive if every subquasivariety is a variety). |
| first_indexed | 2026-02-08T07:58:42Z |
| format | Article |
| id | admjournalluguniveduua-article-487 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2026-02-08T07:58:42Z |
| publishDate | 2019 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-4872019-04-09T04:54:46Z The lattice of quasivarietes of modules over a Dedekind ring Jedlička, Přemysl Matczak, Katarzyna Mućka, Anna quasivarieties, lattices, modules, Dedekind rings 08A62; 08C15; 20N02; 20N05 In 1995 D. V. Belkin described the lattice of quasivarieties of modules over principal ideal domains. The following paper provides a description of the lattice of subquasivarieties of the variety of modules over a given Dedekind ring. It also shows which subvarieties of these modules are deductive (a variety is deductive if every subquasivariety is a variety). Lugansk National Taras Shevchenko University 2019-03-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/487 Algebra and Discrete Mathematics; Vol 27, No 1 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/487/pdf Copyright (c) 2019 Algebra and Discrete Mathematics |
| spellingShingle | quasivarieties lattices modules Dedekind rings 08A62 08C15 20N02 20N05 Jedlička, Přemysl Matczak, Katarzyna Mućka, Anna The lattice of quasivarietes of modules over a Dedekind ring |
| title | The lattice of quasivarietes of modules over a Dedekind ring |
| title_full | The lattice of quasivarietes of modules over a Dedekind ring |
| title_fullStr | The lattice of quasivarietes of modules over a Dedekind ring |
| title_full_unstemmed | The lattice of quasivarietes of modules over a Dedekind ring |
| title_short | The lattice of quasivarietes of modules over a Dedekind ring |
| title_sort | lattice of quasivarietes of modules over a dedekind ring |
| topic | quasivarieties lattices modules Dedekind rings 08A62 08C15 20N02 20N05 |
| topic_facet | quasivarieties lattices modules Dedekind rings 08A62 08C15 20N02 20N05 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/487 |
| work_keys_str_mv | AT jedlickapremysl thelatticeofquasivarietesofmodulesoveradedekindring AT matczakkatarzyna thelatticeofquasivarietesofmodulesoveradedekindring AT muckaanna thelatticeofquasivarietesofmodulesoveradedekindring AT jedlickapremysl latticeofquasivarietesofmodulesoveradedekindring AT matczakkatarzyna latticeofquasivarietesofmodulesoveradedekindring AT muckaanna latticeofquasivarietesofmodulesoveradedekindring |