On the zero forcing number of graphs and their splitting graphs

In [10], the notion of the splitting graph of a~graph was introduced. In this paper we compute the zero forcing number of the splitting graph of a graph and also obtain some bounds besides finding the exact value of this parameter. We prove for any connected graph \(\Gamma\) of order \(n \ge 2\), \(...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Chacko, Baby, Dominic, Charles, Premodkumar, K. P.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2019
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/496
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:In [10], the notion of the splitting graph of a~graph was introduced. In this paper we compute the zero forcing number of the splitting graph of a graph and also obtain some bounds besides finding the exact value of this parameter. We prove for any connected graph \(\Gamma\) of order \(n \ge 2\), \(Z[S(\Gamma)]\le 2 Z(\Gamma)\) and also obtain many classes of graph in which \(Z[S(\Gamma)]= 2 Z(\Gamma)\). Further, we show some classes of graphs in which \(Z[S(\Gamma)] < 2 Z(\Gamma)\).