Modules with minimax Cousin cohomologies

‎Let \(R\) be a commutative Noetherian ring with non-zero identity and let \(X\) be an arbitrary \(R\)-module. In this paper, we show that if all the cohomology modules of the Cousin complex for \(X\) are minimax, then the following hold for any prime ideal \(\mathfrak{p}\) of \(R\) and for every in...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автор: Vahidi, A.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/528
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-528
record_format ojs
spelling admjournalluguniveduua-article-5282021-01-03T08:40:58Z Modules with minimax Cousin cohomologies Vahidi, A. Artinian modules, Bass numbers, Cousin complexes, local cohomology modules, minimax modules 13D02, 13D03, 13D45, 13E10 ‎Let \(R\) be a commutative Noetherian ring with non-zero identity and let \(X\) be an arbitrary \(R\)-module. In this paper, we show that if all the cohomology modules of the Cousin complex for \(X\) are minimax, then the following hold for any prime ideal \(\mathfrak{p}\) of \(R\) and for every integer \(n\) less than \(X\), the height of \(\mathfrak{p}\):(i) the \(n\)th Bass number of \(X\) with respect to \(\mathfrak{p}\) is finite;(ii) the \(n\)th local cohomology module of \(X_\mathfrak{p}\) with respect to \(\mathfrak{p}R_\mathfrak{p}\) is Artinian. Lugansk National Taras Shevchenko University 2020-12-30 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/528 10.12958/adm528 Algebra and Discrete Mathematics; Vol 30, No 1 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/528/pdf Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2021-01-03T08:40:58Z
collection OJS
language English
topic Artinian modules
Bass numbers
Cousin complexes
local cohomology modules
minimax modules
13D02
13D03
13D45
13E10
spellingShingle Artinian modules
Bass numbers
Cousin complexes
local cohomology modules
minimax modules
13D02
13D03
13D45
13E10
Vahidi, A.
Modules with minimax Cousin cohomologies
topic_facet Artinian modules
Bass numbers
Cousin complexes
local cohomology modules
minimax modules
13D02
13D03
13D45
13E10
format Article
author Vahidi, A.
author_facet Vahidi, A.
author_sort Vahidi, A.
title Modules with minimax Cousin cohomologies
title_short Modules with minimax Cousin cohomologies
title_full Modules with minimax Cousin cohomologies
title_fullStr Modules with minimax Cousin cohomologies
title_full_unstemmed Modules with minimax Cousin cohomologies
title_sort modules with minimax cousin cohomologies
description ‎Let \(R\) be a commutative Noetherian ring with non-zero identity and let \(X\) be an arbitrary \(R\)-module. In this paper, we show that if all the cohomology modules of the Cousin complex for \(X\) are minimax, then the following hold for any prime ideal \(\mathfrak{p}\) of \(R\) and for every integer \(n\) less than \(X\), the height of \(\mathfrak{p}\):(i) the \(n\)th Bass number of \(X\) with respect to \(\mathfrak{p}\) is finite;(ii) the \(n\)th local cohomology module of \(X_\mathfrak{p}\) with respect to \(\mathfrak{p}R_\mathfrak{p}\) is Artinian.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/528
work_keys_str_mv AT vahidia moduleswithminimaxcousincohomologies
first_indexed 2025-12-02T15:26:55Z
last_indexed 2025-12-02T15:26:55Z
_version_ 1850410758501826560