Spectral properties of partial automorphisms of a binary rooted tree
We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism \(x\) we assign its action matrix \(A_x\). It is shown that the uniform distribution on eigenvalues of \(A_x\) converges weakly in probability to \(\delta_0\) as \...
Gespeichert in:
| Datum: | 2019 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2019
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/532 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| _version_ | 1856543155231391744 |
|---|---|
| author | Kochubinska, Eugenia |
| author_facet | Kochubinska, Eugenia |
| author_sort | Kochubinska, Eugenia |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2019-01-24T08:21:31Z |
| description | We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism \(x\) we assign its action matrix \(A_x\). It is shown that the uniform distribution on eigenvalues of \(A_x\) converges weakly in probability to \(\delta_0\) as \(n \to \infty\), where \(\delta_0\) is the delta measure concentrated at \(0\). |
| first_indexed | 2025-12-02T15:36:08Z |
| format | Article |
| id | admjournalluguniveduua-article-532 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2025-12-02T15:36:08Z |
| publishDate | 2019 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-5322019-01-24T08:21:31Z Spectral properties of partial automorphisms of a binary rooted tree Kochubinska, Eugenia partial automorphism, semigroup, eigenvalues, random matrix, delta measure 20M18, 20M20,05C05 We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism \(x\) we assign its action matrix \(A_x\). It is shown that the uniform distribution on eigenvalues of \(A_x\) converges weakly in probability to \(\delta_0\) as \(n \to \infty\), where \(\delta_0\) is the delta measure concentrated at \(0\). Lugansk National Taras Shevchenko University 2019-01-24 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/532 Algebra and Discrete Mathematics; Vol 26, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/532/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/532/272 Copyright (c) 2019 Algebra and Discrete Mathematics |
| spellingShingle | partial automorphism semigroup eigenvalues random matrix delta measure 20M18 20M20,05C05 Kochubinska, Eugenia Spectral properties of partial automorphisms of a binary rooted tree |
| title | Spectral properties of partial automorphisms of a binary rooted tree |
| title_full | Spectral properties of partial automorphisms of a binary rooted tree |
| title_fullStr | Spectral properties of partial automorphisms of a binary rooted tree |
| title_full_unstemmed | Spectral properties of partial automorphisms of a binary rooted tree |
| title_short | Spectral properties of partial automorphisms of a binary rooted tree |
| title_sort | spectral properties of partial automorphisms of a binary rooted tree |
| topic | partial automorphism semigroup eigenvalues random matrix delta measure 20M18 20M20,05C05 |
| topic_facet | partial automorphism semigroup eigenvalues random matrix delta measure 20M18 20M20,05C05 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/532 |
| work_keys_str_mv | AT kochubinskaeugenia spectralpropertiesofpartialautomorphismsofabinaryrootedtree |