Spectral properties of partial automorphisms of a binary rooted tree

We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree.  To every partial automorphism \(x\) we assign its action matrix \(A_x\). It is shown that the uniform distribution  on eigenvalues of \(A_x\) converges weakly in probability to \(\delta_0\) as \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
1. Verfasser: Kochubinska, Eugenia
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2019
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/532
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543155231391744
author Kochubinska, Eugenia
author_facet Kochubinska, Eugenia
author_sort Kochubinska, Eugenia
baseUrl_str
collection OJS
datestamp_date 2019-01-24T08:21:31Z
description We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree.  To every partial automorphism \(x\) we assign its action matrix \(A_x\). It is shown that the uniform distribution  on eigenvalues of \(A_x\) converges weakly in probability to \(\delta_0\) as \(n \to \infty\), where \(\delta_0\) is the delta measure concentrated at \(0\).
first_indexed 2025-12-02T15:36:08Z
format Article
id admjournalluguniveduua-article-532
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:36:08Z
publishDate 2019
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-5322019-01-24T08:21:31Z Spectral properties of partial automorphisms of a binary rooted tree Kochubinska, Eugenia partial automorphism, semigroup, eigenvalues, random matrix, delta measure 20M18, 20M20,05C05 We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree.  To every partial automorphism \(x\) we assign its action matrix \(A_x\). It is shown that the uniform distribution  on eigenvalues of \(A_x\) converges weakly in probability to \(\delta_0\) as \(n \to \infty\), where \(\delta_0\) is the delta measure concentrated at \(0\). Lugansk National Taras Shevchenko University 2019-01-24 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/532 Algebra and Discrete Mathematics; Vol 26, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/532/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/532/272 Copyright (c) 2019 Algebra and Discrete Mathematics
spellingShingle partial automorphism
semigroup
eigenvalues
random matrix
delta measure
20M18
20M20,05C05
Kochubinska, Eugenia
Spectral properties of partial automorphisms of a binary rooted tree
title Spectral properties of partial automorphisms of a binary rooted tree
title_full Spectral properties of partial automorphisms of a binary rooted tree
title_fullStr Spectral properties of partial automorphisms of a binary rooted tree
title_full_unstemmed Spectral properties of partial automorphisms of a binary rooted tree
title_short Spectral properties of partial automorphisms of a binary rooted tree
title_sort spectral properties of partial automorphisms of a binary rooted tree
topic partial automorphism
semigroup
eigenvalues
random matrix
delta measure
20M18
20M20,05C05
topic_facet partial automorphism
semigroup
eigenvalues
random matrix
delta measure
20M18
20M20,05C05
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/532
work_keys_str_mv AT kochubinskaeugenia spectralpropertiesofpartialautomorphismsofabinaryrootedtree