A family of doubly stochastic matrices involving Chebyshev polynomials

A doubly stochastic matrix is a square matrix \(A=(a_{ij})\) of non-negative real numbers such that \(\sum_{i}a_{ij}=\sum_{j}a_{ij}=1\). The Chebyshev polynomial of the first kind is defined by the recurrence relation \(T_0(x)=1, T_1(x)=x\), and \[T_{n+1}(x)=2xT_n(x)-T_{n-1}(x).\]In this paper, we s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Ahmed, Tanbir, Caballero, José Manuel Rodriguez
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2019
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/557
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-557
record_format ojs
spelling admjournalluguniveduua-article-5572019-07-14T19:54:06Z A family of doubly stochastic matrices involving Chebyshev polynomials Ahmed, Tanbir Caballero, José Manuel Rodriguez doubly stochastic matrices, Chebyshev polynomials A doubly stochastic matrix is a square matrix \(A=(a_{ij})\) of non-negative real numbers such that \(\sum_{i}a_{ij}=\sum_{j}a_{ij}=1\). The Chebyshev polynomial of the first kind is defined by the recurrence relation \(T_0(x)=1, T_1(x)=x\), and \[T_{n+1}(x)=2xT_n(x)-T_{n-1}(x).\]In this paper, we show a \(2^k\times 2^k\) (for each integer \(k\geq 1\)) doubly stochastic matrix whose characteristic polynomial is \(x^2-1\) times a product of irreducible Chebyshev polynomials of the first kind (up to rescaling by rational numbers). Lugansk National Taras Shevchenko University 2019-07-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/557 Algebra and Discrete Mathematics; Vol 27, No 2 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/557/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/557/540 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/557/541 Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2019-07-14T19:54:06Z
collection OJS
language English
topic doubly stochastic matrices
Chebyshev polynomials

spellingShingle doubly stochastic matrices
Chebyshev polynomials

Ahmed, Tanbir
Caballero, José Manuel Rodriguez
A family of doubly stochastic matrices involving Chebyshev polynomials
topic_facet doubly stochastic matrices
Chebyshev polynomials

format Article
author Ahmed, Tanbir
Caballero, José Manuel Rodriguez
author_facet Ahmed, Tanbir
Caballero, José Manuel Rodriguez
author_sort Ahmed, Tanbir
title A family of doubly stochastic matrices involving Chebyshev polynomials
title_short A family of doubly stochastic matrices involving Chebyshev polynomials
title_full A family of doubly stochastic matrices involving Chebyshev polynomials
title_fullStr A family of doubly stochastic matrices involving Chebyshev polynomials
title_full_unstemmed A family of doubly stochastic matrices involving Chebyshev polynomials
title_sort family of doubly stochastic matrices involving chebyshev polynomials
description A doubly stochastic matrix is a square matrix \(A=(a_{ij})\) of non-negative real numbers such that \(\sum_{i}a_{ij}=\sum_{j}a_{ij}=1\). The Chebyshev polynomial of the first kind is defined by the recurrence relation \(T_0(x)=1, T_1(x)=x\), and \[T_{n+1}(x)=2xT_n(x)-T_{n-1}(x).\]In this paper, we show a \(2^k\times 2^k\) (for each integer \(k\geq 1\)) doubly stochastic matrix whose characteristic polynomial is \(x^2-1\) times a product of irreducible Chebyshev polynomials of the first kind (up to rescaling by rational numbers).
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/557
work_keys_str_mv AT ahmedtanbir afamilyofdoublystochasticmatricesinvolvingchebyshevpolynomials
AT caballerojosemanuelrodriguez afamilyofdoublystochasticmatricesinvolvingchebyshevpolynomials
AT ahmedtanbir familyofdoublystochasticmatricesinvolvingchebyshevpolynomials
AT caballerojosemanuelrodriguez familyofdoublystochasticmatricesinvolvingchebyshevpolynomials
first_indexed 2025-12-02T15:36:11Z
last_indexed 2025-12-02T15:36:11Z
_version_ 1850411342391934976