A morphic ring of neat range one

We show that a commutative ring \(R\) has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring \(R\) has a neat range one if and only if for any elements \(a, b \in R\) such that \(aR=bR\) there exist neat ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Pihura, Oksana, Zabavsky, Bohdan
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2016
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/57
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543154322276352
author Pihura, Oksana
Zabavsky, Bohdan
author_facet Pihura, Oksana
Zabavsky, Bohdan
author_sort Pihura, Oksana
baseUrl_str
collection OJS
datestamp_date 2016-01-12T07:40:37Z
description We show that a commutative ring \(R\) has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring \(R\) has a neat range one if and only if for any elements \(a, b \in R\) such that \(aR=bR\) there exist neat elements \(s, t \in R\) such that \(bs=c\), \(ct=b\). Examples of morphic rings of neat range one are given.
first_indexed 2025-12-02T15:36:14Z
format Article
id admjournalluguniveduua-article-57
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:36:14Z
publishDate 2016
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-572016-01-12T07:40:37Z A morphic ring of neat range one Pihura, Oksana Zabavsky, Bohdan Bezout ring, neat ring, clear ring, elementary divisor ring, stable range one, neat range one 13F99 We show that a commutative ring \(R\) has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring \(R\) has a neat range one if and only if for any elements \(a, b \in R\) such that \(aR=bR\) there exist neat elements \(s, t \in R\) such that \(bs=c\), \(ct=b\). Examples of morphic rings of neat range one are given. Lugansk National Taras Shevchenko University 2016-01-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/57 Algebra and Discrete Mathematics; Vol 20, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/57/pdf Copyright (c) 2016 Algebra and Discrete Mathematics
spellingShingle Bezout ring
neat ring
clear ring
elementary divisor ring
stable range one
neat range one
13F99
Pihura, Oksana
Zabavsky, Bohdan
A morphic ring of neat range one
title A morphic ring of neat range one
title_full A morphic ring of neat range one
title_fullStr A morphic ring of neat range one
title_full_unstemmed A morphic ring of neat range one
title_short A morphic ring of neat range one
title_sort morphic ring of neat range one
topic Bezout ring
neat ring
clear ring
elementary divisor ring
stable range one
neat range one
13F99
topic_facet Bezout ring
neat ring
clear ring
elementary divisor ring
stable range one
neat range one
13F99
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/57
work_keys_str_mv AT pihuraoksana amorphicringofneatrangeone
AT zabavskybohdan amorphicringofneatrangeone
AT pihuraoksana morphicringofneatrangeone
AT zabavskybohdan morphicringofneatrangeone