Generalized 2-absorbing and strongly generalized 2-absorbing second submodules

Let \(R\) be a commutative ring with identity. A proper submodule \(N\) of an \(R\)-module \(M\) is said to be a 2-absorbing submodule of  \(M\) if whenever \(abm \in N\) for some \(a, b \in R\) and \(m \in M\), then \(am \in N\) or \(bm \in N\) or \(ab \in (N :_R M)\). In [3], the authors introduce...

Full description

Saved in:
Bibliographic Details
Date:2020
Main Authors: ‎Ansari-Toroghy, H., Farshadifar, F., ‎Maleki-Roudposhti, S.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2020
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/585
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-585
record_format ojs
spelling admjournalluguniveduua-article-5852020-07-08T07:13:20Z Generalized 2-absorbing and strongly generalized 2-absorbing second submodules ‎Ansari-Toroghy, H. Farshadifar, F. ‎Maleki-Roudposhti, S. second, generalized 2-absorbing second 13C13‎, ‎13C99 Let \(R\) be a commutative ring with identity. A proper submodule \(N\) of an \(R\)-module \(M\) is said to be a 2-absorbing submodule of  \(M\) if whenever \(abm \in N\) for some \(a, b \in R\) and \(m \in M\), then \(am \in N\) or \(bm \in N\) or \(ab \in (N :_R M)\). In [3], the authors introduced two dual notion of 2-absorbing submodules (that is, 2-absorbing and strongly 2-absorbing second submodules) of \(M\) and investigated some properties of these classes of modules. In this paper, we will introduce the concepts of generalized 2-absorbing and strongly generalized 2-absorbing second submodules of modules over a commutative ring and obtain some related results. Lugansk National Taras Shevchenko University 2020-07-08 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/585 10.12958/adm585 Algebra and Discrete Mathematics; Vol 29, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/585/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/585/270 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2020-07-08T07:13:20Z
collection OJS
language English
topic second
generalized 2-absorbing second
13C13‎
‎13C99
spellingShingle second
generalized 2-absorbing second
13C13‎
‎13C99
‎Ansari-Toroghy, H.
Farshadifar, F.
‎Maleki-Roudposhti, S.
Generalized 2-absorbing and strongly generalized 2-absorbing second submodules
topic_facet second
generalized 2-absorbing second
13C13‎
‎13C99
format Article
author ‎Ansari-Toroghy, H.
Farshadifar, F.
‎Maleki-Roudposhti, S.
author_facet ‎Ansari-Toroghy, H.
Farshadifar, F.
‎Maleki-Roudposhti, S.
author_sort ‎Ansari-Toroghy, H.
title Generalized 2-absorbing and strongly generalized 2-absorbing second submodules
title_short Generalized 2-absorbing and strongly generalized 2-absorbing second submodules
title_full Generalized 2-absorbing and strongly generalized 2-absorbing second submodules
title_fullStr Generalized 2-absorbing and strongly generalized 2-absorbing second submodules
title_full_unstemmed Generalized 2-absorbing and strongly generalized 2-absorbing second submodules
title_sort generalized 2-absorbing and strongly generalized 2-absorbing second submodules
description Let \(R\) be a commutative ring with identity. A proper submodule \(N\) of an \(R\)-module \(M\) is said to be a 2-absorbing submodule of  \(M\) if whenever \(abm \in N\) for some \(a, b \in R\) and \(m \in M\), then \(am \in N\) or \(bm \in N\) or \(ab \in (N :_R M)\). In [3], the authors introduced two dual notion of 2-absorbing submodules (that is, 2-absorbing and strongly 2-absorbing second submodules) of \(M\) and investigated some properties of these classes of modules. In this paper, we will introduce the concepts of generalized 2-absorbing and strongly generalized 2-absorbing second submodules of modules over a commutative ring and obtain some related results.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/585
work_keys_str_mv AT ansaritoroghyh generalized2absorbingandstronglygeneralized2absorbingsecondsubmodules
AT farshadifarf generalized2absorbingandstronglygeneralized2absorbingsecondsubmodules
AT malekiroudposhtis generalized2absorbingandstronglygeneralized2absorbingsecondsubmodules
first_indexed 2025-12-02T15:26:58Z
last_indexed 2025-12-02T15:26:58Z
_version_ 1850411875064348672