Generalized 2-absorbing and strongly generalized 2-absorbing second submodules
Let \(R\) be a commutative ring with identity. A proper submodule \(N\) of an \(R\)-module \(M\) is said to be a 2-absorbing submodule of \(M\) if whenever \(abm \in N\) for some \(a, b \in R\) and \(m \in M\), then \(am \in N\) or \(bm \in N\) or \(ab \in (N :_R M)\). In [3], the authors introduce...
Saved in:
| Date: | 2020 |
|---|---|
| Main Authors: | Ansari-Toroghy, H., Farshadifar, F., Maleki-Roudposhti, S. |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2020
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/585 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsSimilar Items
-
Generalized 2-absorbing and strongly generalized 2-absorbing second submodules
by: Ansari-Toroghy, H., et al.
Published: (2020) -
\(S\)-second submodules of a module
by: Farshadifar, F.
Published: (2022) -
\(S\)-second submodules of a module
by: Farshadifar, F.
Published: (2022) -
Generalized 2-absorbing and strongly generalized 2-absorbing second submodules
by: Ansari-Toroghy, H., et al.
Published: (2020) -
Uniformly 2-absorbing primary ideals of commutative rings
by: Mostafanasab, H., et al.
Published: (2020)