Hall operators on the set of formations of finite groups
Let \(\pi\) be a nonempty set of primes and let \(\frak{F}\) be a saturated formation of all finite soluble \(\pi\)-groups. It is constructed the saturated formation consisting of all finite \(\pi\)-soluble groups whose \(\frak{F}\)-projectors contain a Hall \(\pi\)-subgroup.
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/622 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | Let \(\pi\) be a nonempty set of primes and let \(\frak{F}\) be a saturated formation of all finite soluble \(\pi\)-groups. It is constructed the saturated formation consisting of all finite \(\pi\)-soluble groups whose \(\frak{F}\)-projectors contain a Hall \(\pi\)-subgroup. |
|---|