Hall operators on the set of formations of finite groups
Let \(\pi\) be a nonempty set of primes and let \(\frak{F}\) be a saturated formation of all finite soluble \(\pi\)-groups. It is constructed the saturated formation consisting of all finite \(\pi\)-soluble groups whose \(\frak{F}\)-projectors contain a Hall \(\pi\)-subgroup.
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/622 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-622 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-6222018-04-04T08:18:32Z Hall operators on the set of formations of finite groups Mekhovich, Andrei P. Vorob’ev, Nikolay N. Vorob’ev, Nikolay T. Hall \(\pi\)-subgroup, \(\pi\)-soluble group, formation of finite groups, saturated formation, canonical satellite, \(\frak{F}\)-projector 20D10 Let \(\pi\) be a nonempty set of primes and let \(\frak{F}\) be a saturated formation of all finite soluble \(\pi\)-groups. It is constructed the saturated formation consisting of all finite \(\pi\)-soluble groups whose \(\frak{F}\)-projectors contain a Hall \(\pi\)-subgroup. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/622 Algebra and Discrete Mathematics; Vol 9, No 1 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/622/157 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-04-04T08:18:32Z |
| collection |
OJS |
| language |
English |
| topic |
Hall \(\pi\)-subgroup \(\pi\)-soluble group formation of finite groups saturated formation canonical satellite \(\frak{F}\)-projector 20D10 |
| spellingShingle |
Hall \(\pi\)-subgroup \(\pi\)-soluble group formation of finite groups saturated formation canonical satellite \(\frak{F}\)-projector 20D10 Mekhovich, Andrei P. Vorob’ev, Nikolay N. Vorob’ev, Nikolay T. Hall operators on the set of formations of finite groups |
| topic_facet |
Hall \(\pi\)-subgroup \(\pi\)-soluble group formation of finite groups saturated formation canonical satellite \(\frak{F}\)-projector 20D10 |
| format |
Article |
| author |
Mekhovich, Andrei P. Vorob’ev, Nikolay N. Vorob’ev, Nikolay T. |
| author_facet |
Mekhovich, Andrei P. Vorob’ev, Nikolay N. Vorob’ev, Nikolay T. |
| author_sort |
Mekhovich, Andrei P. |
| title |
Hall operators on the set of formations of finite groups |
| title_short |
Hall operators on the set of formations of finite groups |
| title_full |
Hall operators on the set of formations of finite groups |
| title_fullStr |
Hall operators on the set of formations of finite groups |
| title_full_unstemmed |
Hall operators on the set of formations of finite groups |
| title_sort |
hall operators on the set of formations of finite groups |
| description |
Let \(\pi\) be a nonempty set of primes and let \(\frak{F}\) be a saturated formation of all finite soluble \(\pi\)-groups. It is constructed the saturated formation consisting of all finite \(\pi\)-soluble groups whose \(\frak{F}\)-projectors contain a Hall \(\pi\)-subgroup. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/622 |
| work_keys_str_mv |
AT mekhovichandreip halloperatorsonthesetofformationsoffinitegroups AT vorobevnikolayn halloperatorsonthesetofformationsoffinitegroups AT vorobevnikolayt halloperatorsonthesetofformationsoffinitegroups |
| first_indexed |
2025-12-02T15:44:41Z |
| last_indexed |
2025-12-02T15:44:41Z |
| _version_ |
1850411877130043392 |