Hall operators on the set of formations of finite groups

Let \(\pi\) be a nonempty set of primes and let  \(\frak{F}\)  be a saturated formation of all finite soluble \(\pi\)-groups. It is constructed the saturated formation consisting of all finite \(\pi\)-soluble groups whose \(\frak{F}\)-projectors contain a Hall \(\pi\)-subgroup.

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Mekhovich, Andrei P., Vorob’ev, Nikolay N., Vorob’ev, Nikolay T.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/622
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-622
record_format ojs
spelling admjournalluguniveduua-article-6222018-04-04T08:18:32Z Hall operators on the set of formations of finite groups Mekhovich, Andrei P. Vorob’ev, Nikolay N. Vorob’ev, Nikolay T. Hall \(\pi\)-subgroup, \(\pi\)-soluble group, formation of finite groups, saturated formation, canonical satellite, \(\frak{F}\)-projector 20D10 Let \(\pi\) be a nonempty set of primes and let  \(\frak{F}\)  be a saturated formation of all finite soluble \(\pi\)-groups. It is constructed the saturated formation consisting of all finite \(\pi\)-soluble groups whose \(\frak{F}\)-projectors contain a Hall \(\pi\)-subgroup. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/622 Algebra and Discrete Mathematics; Vol 9, No 1 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/622/157 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T08:18:32Z
collection OJS
language English
topic Hall \(\pi\)-subgroup
\(\pi\)-soluble group
formation of finite groups
saturated formation
canonical satellite
\(\frak{F}\)-projector
20D10
spellingShingle Hall \(\pi\)-subgroup
\(\pi\)-soluble group
formation of finite groups
saturated formation
canonical satellite
\(\frak{F}\)-projector
20D10
Mekhovich, Andrei P.
Vorob’ev, Nikolay N.
Vorob’ev, Nikolay T.
Hall operators on the set of formations of finite groups
topic_facet Hall \(\pi\)-subgroup
\(\pi\)-soluble group
formation of finite groups
saturated formation
canonical satellite
\(\frak{F}\)-projector
20D10
format Article
author Mekhovich, Andrei P.
Vorob’ev, Nikolay N.
Vorob’ev, Nikolay T.
author_facet Mekhovich, Andrei P.
Vorob’ev, Nikolay N.
Vorob’ev, Nikolay T.
author_sort Mekhovich, Andrei P.
title Hall operators on the set of formations of finite groups
title_short Hall operators on the set of formations of finite groups
title_full Hall operators on the set of formations of finite groups
title_fullStr Hall operators on the set of formations of finite groups
title_full_unstemmed Hall operators on the set of formations of finite groups
title_sort hall operators on the set of formations of finite groups
description Let \(\pi\) be a nonempty set of primes and let  \(\frak{F}\)  be a saturated formation of all finite soluble \(\pi\)-groups. It is constructed the saturated formation consisting of all finite \(\pi\)-soluble groups whose \(\frak{F}\)-projectors contain a Hall \(\pi\)-subgroup.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/622
work_keys_str_mv AT mekhovichandreip halloperatorsonthesetofformationsoffinitegroups
AT vorobevnikolayn halloperatorsonthesetofformationsoffinitegroups
AT vorobevnikolayt halloperatorsonthesetofformationsoffinitegroups
first_indexed 2025-12-02T15:44:41Z
last_indexed 2025-12-02T15:44:41Z
_version_ 1850411877130043392