Automorphisms of finitary incidence rings

Let \(P\) be a quasiordered set, \(R\) an associative unital ring,  \(\mathcal{C}(P,R)\) a partially ordered category associated with the pair \((P,R)\)[6], \(FI(P,R)\) a finitary incidence ring of \(\mathcal{C}(P,R)\)[6]. We prove that the group \({\rm Out}FI\) of outer automorphisms of \(FI(P,R)\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Khripchenko, Nikolay
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/632
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-632
record_format ojs
spelling admjournalluguniveduua-article-6322018-04-04T09:11:25Z Automorphisms of finitary incidence rings Khripchenko, Nikolay finitary incidence algebra, partially ordered category,quasiordered set, automorphism 18E05, 18B35, 16S50, 16S60,16G20, 08A35 Let \(P\) be a quasiordered set, \(R\) an associative unital ring,  \(\mathcal{C}(P,R)\) a partially ordered category associated with the pair \((P,R)\)[6], \(FI(P,R)\) a finitary incidence ring of \(\mathcal{C}(P,R)\)[6]. We prove that the group \({\rm Out}FI\) of outer automorphisms of \(FI(P,R)\) is isomorphic to the group \({\rm Out}\mathcal{C}\) of outer automorphisms of \(\mathcal{C}(P,R)\) under the assumption that \(R\) is indecomposable. In particular, if \(R\) is local, the equivalence classes of \(P\) are finite and \(P=\bigcup\limits_{i\in I}P_i\) is the decomposition of \(P\) into the disjoint union of the connected components, then \({\rm Out}FI\cong (H^1(\overline P,C(R)^*)\rtimes\prod\limits_{i\in I}{\rm Out}R)\rtimes{\rm Out}P\). Here \(H^1(\overline P,C(R)^*)\) is the first cohomology group of the order complex of the induced poset \(\overline P\) with the values in the multiplicative group of central invertible elements of \(R\). As a consequences, Theorem 2 [9], Theorem 5 [2 ] and Theorem 1.2  [8] are obtained. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/632 Algebra and Discrete Mathematics; Vol 9, No 2 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/632/166 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:11:25Z
collection OJS
language English
topic finitary incidence algebra
partially ordered category,quasiordered set
automorphism
18E05
18B35
16S50
16S60,16G20
08A35
spellingShingle finitary incidence algebra
partially ordered category,quasiordered set
automorphism
18E05
18B35
16S50
16S60,16G20
08A35
Khripchenko, Nikolay
Automorphisms of finitary incidence rings
topic_facet finitary incidence algebra
partially ordered category,quasiordered set
automorphism
18E05
18B35
16S50
16S60,16G20
08A35
format Article
author Khripchenko, Nikolay
author_facet Khripchenko, Nikolay
author_sort Khripchenko, Nikolay
title Automorphisms of finitary incidence rings
title_short Automorphisms of finitary incidence rings
title_full Automorphisms of finitary incidence rings
title_fullStr Automorphisms of finitary incidence rings
title_full_unstemmed Automorphisms of finitary incidence rings
title_sort automorphisms of finitary incidence rings
description Let \(P\) be a quasiordered set, \(R\) an associative unital ring,  \(\mathcal{C}(P,R)\) a partially ordered category associated with the pair \((P,R)\)[6], \(FI(P,R)\) a finitary incidence ring of \(\mathcal{C}(P,R)\)[6]. We prove that the group \({\rm Out}FI\) of outer automorphisms of \(FI(P,R)\) is isomorphic to the group \({\rm Out}\mathcal{C}\) of outer automorphisms of \(\mathcal{C}(P,R)\) under the assumption that \(R\) is indecomposable. In particular, if \(R\) is local, the equivalence classes of \(P\) are finite and \(P=\bigcup\limits_{i\in I}P_i\) is the decomposition of \(P\) into the disjoint union of the connected components, then \({\rm Out}FI\cong (H^1(\overline P,C(R)^*)\rtimes\prod\limits_{i\in I}{\rm Out}R)\rtimes{\rm Out}P\). Here \(H^1(\overline P,C(R)^*)\) is the first cohomology group of the order complex of the induced poset \(\overline P\) with the values in the multiplicative group of central invertible elements of \(R\). As a consequences, Theorem 2 [9], Theorem 5 [2 ] and Theorem 1.2  [8] are obtained.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/632
work_keys_str_mv AT khripchenkonikolay automorphismsoffinitaryincidencerings
first_indexed 2025-12-02T15:40:30Z
last_indexed 2025-12-02T15:40:30Z
_version_ 1850411613453025280