Biserial minor degenerations of matrix algebras over a field

Let \(n\geq 2\) be a positive integer, \(K\) an arbitrary field, and \( q = [ q ^{(1)}| \ldots | q ^{(n)}]\) an \(n\)-block matrix of \(n\times n\) square matrices \( q ^{(1)}, \ldots, q ^{(n)}\) with coefficients in \(K\) satisfying the conditions (C1) and (C2) listed in the introduction. We study...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Wlodarska, Anna
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/636
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-636
record_format ojs
spelling admjournalluguniveduua-article-6362018-04-04T09:11:25Z Biserial minor degenerations of matrix algebras over a field Wlodarska, Anna right special biserial algebra, biserial algebra, Gabriel quiver 16G10, 16G60, 14R20, 16S80 Let \(n\geq 2\) be a positive integer, \(K\) an arbitrary field, and \( q = [ q ^{(1)}| \ldots | q ^{(n)}]\) an \(n\)-block matrix of \(n\times n\) square matrices \( q ^{(1)}, \ldots, q ^{(n)}\) with coefficients in \(K\) satisfying the conditions (C1) and (C2) listed in the introduction. We study minor degenerations \(\mathbb{M}^q_n(K)\) of the full matrix algebra \(\mathbb{M}_n(K)\) in the sense of Fujita-Sakai-Simson [7].   A characterisation of all block matrices \( q = [ q ^{(1)}| \ldots | q ^{(n)}]\) such that the algebra \(\mathbb{M}^q_n(K)\) is basic and right biserial is given in the paper. We also prove that a basic algebra \(\mathbb{M}^q_n(K)\) is right biserial if and only if \(\mathbb{M}^q_n(K)\) is right special biserial. It is also shown that the \(K\)-dimensions of the left socle of \(\mathbb{M}^q_n(K)\) and of the right socle of \(\mathbb{M}^q_n(K)\) coincide, in case \(\mathbb{M}^q_n(K)\) is basic and biserial. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/636 Algebra and Discrete Mathematics; Vol 9, No 2 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/636/170 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:11:25Z
collection OJS
language English
topic right special biserial algebra
biserial algebra
Gabriel quiver
16G10
16G60
14R20
16S80
spellingShingle right special biserial algebra
biserial algebra
Gabriel quiver
16G10
16G60
14R20
16S80
Wlodarska, Anna
Biserial minor degenerations of matrix algebras over a field
topic_facet right special biserial algebra
biserial algebra
Gabriel quiver
16G10
16G60
14R20
16S80
format Article
author Wlodarska, Anna
author_facet Wlodarska, Anna
author_sort Wlodarska, Anna
title Biserial minor degenerations of matrix algebras over a field
title_short Biserial minor degenerations of matrix algebras over a field
title_full Biserial minor degenerations of matrix algebras over a field
title_fullStr Biserial minor degenerations of matrix algebras over a field
title_full_unstemmed Biserial minor degenerations of matrix algebras over a field
title_sort biserial minor degenerations of matrix algebras over a field
description Let \(n\geq 2\) be a positive integer, \(K\) an arbitrary field, and \( q = [ q ^{(1)}| \ldots | q ^{(n)}]\) an \(n\)-block matrix of \(n\times n\) square matrices \( q ^{(1)}, \ldots, q ^{(n)}\) with coefficients in \(K\) satisfying the conditions (C1) and (C2) listed in the introduction. We study minor degenerations \(\mathbb{M}^q_n(K)\) of the full matrix algebra \(\mathbb{M}_n(K)\) in the sense of Fujita-Sakai-Simson [7].   A characterisation of all block matrices \( q = [ q ^{(1)}| \ldots | q ^{(n)}]\) such that the algebra \(\mathbb{M}^q_n(K)\) is basic and right biserial is given in the paper. We also prove that a basic algebra \(\mathbb{M}^q_n(K)\) is right biserial if and only if \(\mathbb{M}^q_n(K)\) is right special biserial. It is also shown that the \(K\)-dimensions of the left socle of \(\mathbb{M}^q_n(K)\) and of the right socle of \(\mathbb{M}^q_n(K)\) coincide, in case \(\mathbb{M}^q_n(K)\) is basic and biserial.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/636
work_keys_str_mv AT wlodarskaanna biserialminordegenerationsofmatrixalgebrasoverafield
first_indexed 2025-12-02T15:43:02Z
last_indexed 2025-12-02T15:43:02Z
_version_ 1850411773186801664