On separable group rings

Let \(G\) be a finite non-abelian group, \(R\) a ring with 1, and \(\overline G\) the inner automorphism group of the group ring \(RG\) over \(R\) induced by the elements of \(G\). Then three main results are shown for the separable group ring \(RG\) over \(R\): (i) \(RG\) is not a Galois extension...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Szeto, George, Xue, Lianyong
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/645
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-645
record_format ojs
spelling admjournalluguniveduua-article-6452018-04-04T09:14:15Z On separable group rings Szeto, George Xue, Lianyong Galois extensions, Galois algebras, separable extensions, group rings, group algebras 16S35, 16W20 Let \(G\) be a finite non-abelian group, \(R\) a ring with 1, and \(\overline G\) the inner automorphism group of the group ring \(RG\) over \(R\) induced by the elements of \(G\). Then three main results are shown for the separable group ring \(RG\) over \(R\): (i) \(RG\) is not a Galois extension of \((RG)^{\overline G}\) with Galois group \(\overline G\) when the order of \(G\) is invertible in \(R\), (ii) an equivalent condition for the Galois map from the subgroups \(H\) of \(G\) to \((RG)^{H}\) by the conjugate action of elements in \(H\) on \(RG\) is given to be one-to-one and for a separable subalgebra of \(RG\) having a preimage, respectively, and (iii) the Galois map is not an onto map. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/645 Algebra and Discrete Mathematics; Vol 10, No 1 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/645/179 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:14:15Z
collection OJS
language English
topic Galois extensions
Galois algebras
separable extensions
group rings
group algebras
16S35
16W20
spellingShingle Galois extensions
Galois algebras
separable extensions
group rings
group algebras
16S35
16W20
Szeto, George
Xue, Lianyong
On separable group rings
topic_facet Galois extensions
Galois algebras
separable extensions
group rings
group algebras
16S35
16W20
format Article
author Szeto, George
Xue, Lianyong
author_facet Szeto, George
Xue, Lianyong
author_sort Szeto, George
title On separable group rings
title_short On separable group rings
title_full On separable group rings
title_fullStr On separable group rings
title_full_unstemmed On separable group rings
title_sort on separable group rings
description Let \(G\) be a finite non-abelian group, \(R\) a ring with 1, and \(\overline G\) the inner automorphism group of the group ring \(RG\) over \(R\) induced by the elements of \(G\). Then three main results are shown for the separable group ring \(RG\) over \(R\): (i) \(RG\) is not a Galois extension of \((RG)^{\overline G}\) with Galois group \(\overline G\) when the order of \(G\) is invertible in \(R\), (ii) an equivalent condition for the Galois map from the subgroups \(H\) of \(G\) to \((RG)^{H}\) by the conjugate action of elements in \(H\) on \(RG\) is given to be one-to-one and for a separable subalgebra of \(RG\) having a preimage, respectively, and (iii) the Galois map is not an onto map.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/645
work_keys_str_mv AT szetogeorge onseparablegrouprings
AT xuelianyong onseparablegrouprings
first_indexed 2025-12-02T15:43:03Z
last_indexed 2025-12-02T15:43:03Z
_version_ 1850411774341283840