Modules whose maximal submodules have \(\tau\)-supplements
Let \(R\) be a ring and \(\tau\) be a preradical for the category of left \(R\)-modules. In this paper, we study on modules whose maximal submodules have \(\tau\)-supplements. We give some characterizations of these modules in terms their certain submodules, so called \(\tau\)-local submodules. For...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/646 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | Let \(R\) be a ring and \(\tau\) be a preradical for the category of left \(R\)-modules. In this paper, we study on modules whose maximal submodules have \(\tau\)-supplements. We give some characterizations of these modules in terms their certain submodules, so called \(\tau\)-local submodules. For some certain preradicals \(\tau\), i.e. \(\tau=\delta\) and idempotent \(\tau\), we prove that every maximal submodule of \(M\) has a \(\tau\)-supplement if and only if every cofinite submodule of \(M\) has a \(\tau\)-supplement. For a radical \(\tau\) on \(\operatorname{R-Mod}\), we prove that, for every \(R\)-module every submodule is a \(\tau\)-supplement if and only if \(R/\tau(R)\) is semisimple and \(\tau\) is hereditary. |
|---|