\(2\)-Galois groups and the Kaplansky radical

An accurate description of the Galois group \(G_{F}(2)\) of the maximal Galois \(2\)-extension of a field \(F\) may be given for fields \(F\) admitting a \(2\)-henselian valuation ring. In this note we generalize this result by characterizing the fields for which \({G_{F}{(2)}}\) decomposes as a fre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Dario, Ronie Peterson, Engler, Antonio Jose
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/649
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-649
record_format ojs
spelling admjournalluguniveduua-article-6492018-04-04T09:17:05Z \(2\)-Galois groups and the Kaplansky radical Dario, Ronie Peterson Engler, Antonio Jose Brauer group, free pro-\(2\) product, Galois group, \(2\)-henselian valuation ring, quadratic form 12J10; 12F10 An accurate description of the Galois group \(G_{F}(2)\) of the maximal Galois \(2\)-extension of a field \(F\) may be given for fields \(F\) admitting a \(2\)-henselian valuation ring. In this note we generalize this result by characterizing the fields for which \({G_{F}{(2)}}\) decomposes as a free pro-\(2\) product \(\mathcal{F}*\mathcal{H}\) where \(\mathcal{F}\) is a free closed subgroup of \({G_{F}{(2)}}\) and \(\mathcal{H}\) is the Galois group of a \(2\)-henselian extension of \(F\). The free product decomposition of \({G_{F}{(2)}}\) is equivalent to the existence of a valuation ring compatible with the Kaplansky radical of \(F\). Fields with Kaplansky radical fulfilling prescribed conditions are constructed, as an application. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/649 Algebra and Discrete Mathematics; Vol 10, No 2 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/649/183 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:17:05Z
collection OJS
language English
topic Brauer group
free pro-\(2\) product
Galois group
\(2\)-henselian valuation ring
quadratic form
12J10
12F10
spellingShingle Brauer group
free pro-\(2\) product
Galois group
\(2\)-henselian valuation ring
quadratic form
12J10
12F10
Dario, Ronie Peterson
Engler, Antonio Jose
\(2\)-Galois groups and the Kaplansky radical
topic_facet Brauer group
free pro-\(2\) product
Galois group
\(2\)-henselian valuation ring
quadratic form
12J10
12F10
format Article
author Dario, Ronie Peterson
Engler, Antonio Jose
author_facet Dario, Ronie Peterson
Engler, Antonio Jose
author_sort Dario, Ronie Peterson
title \(2\)-Galois groups and the Kaplansky radical
title_short \(2\)-Galois groups and the Kaplansky radical
title_full \(2\)-Galois groups and the Kaplansky radical
title_fullStr \(2\)-Galois groups and the Kaplansky radical
title_full_unstemmed \(2\)-Galois groups and the Kaplansky radical
title_sort \(2\)-galois groups and the kaplansky radical
description An accurate description of the Galois group \(G_{F}(2)\) of the maximal Galois \(2\)-extension of a field \(F\) may be given for fields \(F\) admitting a \(2\)-henselian valuation ring. In this note we generalize this result by characterizing the fields for which \({G_{F}{(2)}}\) decomposes as a free pro-\(2\) product \(\mathcal{F}*\mathcal{H}\) where \(\mathcal{F}\) is a free closed subgroup of \({G_{F}{(2)}}\) and \(\mathcal{H}\) is the Galois group of a \(2\)-henselian extension of \(F\). The free product decomposition of \({G_{F}{(2)}}\) is equivalent to the existence of a valuation ring compatible with the Kaplansky radical of \(F\). Fields with Kaplansky radical fulfilling prescribed conditions are constructed, as an application.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/649
work_keys_str_mv AT darioroniepeterson 2galoisgroupsandthekaplanskyradical
AT englerantoniojose 2galoisgroupsandthekaplanskyradical
first_indexed 2025-12-02T15:27:11Z
last_indexed 2025-12-02T15:27:11Z
_version_ 1850411879750434816