On modules over group rings of soluble groups with commutative ring of scalars
The author studies an \(\bf R\)\(G\)-module \(A\) such that \(\bf R\) is a commutative ring, \(A/C_{A}(G)\) is not a Noetherian \(\bf R\)-module, \(C_{G}(A)=1\), \(G\) is a soluble group. The system of all subgroups \(H \leq G\), for which the quotient modules \(A/C_{A}(H)\) are not Noetherian \(\...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/650 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-650 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-6502018-04-04T09:17:05Z On modules over group rings of soluble groups with commutative ring of scalars Dashkova, O. Yu. a maximal condition on subgroups, a Noetherian module, a soluble group 20F16; 20H25 The author studies an \(\bf R\)\(G\)-module \(A\) such that \(\bf R\) is a commutative ring, \(A/C_{A}(G)\) is not a Noetherian \(\bf R\)-module, \(C_{G}(A)=1\), \(G\) is a soluble group. The system of all subgroups \(H \leq G\), for which the quotient modules \(A/C_{A}(H)\) are not Noetherian \(\bf R\)-modules, satisfies the maximal condition. This condition is called the condition \(max-nnd\). The structure of the group \(G\) is described. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/650 Algebra and Discrete Mathematics; Vol 10, No 2 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/650/184 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-04-04T09:17:05Z |
| collection |
OJS |
| language |
English |
| topic |
a maximal condition on subgroups a Noetherian module a soluble group 20F16 20H25 |
| spellingShingle |
a maximal condition on subgroups a Noetherian module a soluble group 20F16 20H25 Dashkova, O. Yu. On modules over group rings of soluble groups with commutative ring of scalars |
| topic_facet |
a maximal condition on subgroups a Noetherian module a soluble group 20F16 20H25 |
| format |
Article |
| author |
Dashkova, O. Yu. |
| author_facet |
Dashkova, O. Yu. |
| author_sort |
Dashkova, O. Yu. |
| title |
On modules over group rings of soluble groups with commutative ring of scalars |
| title_short |
On modules over group rings of soluble groups with commutative ring of scalars |
| title_full |
On modules over group rings of soluble groups with commutative ring of scalars |
| title_fullStr |
On modules over group rings of soluble groups with commutative ring of scalars |
| title_full_unstemmed |
On modules over group rings of soluble groups with commutative ring of scalars |
| title_sort |
on modules over group rings of soluble groups with commutative ring of scalars |
| description |
The author studies an \(\bf R\)\(G\)-module \(A\) such that \(\bf R\) is a commutative ring, \(A/C_{A}(G)\) is not a Noetherian \(\bf R\)-module, \(C_{G}(A)=1\), \(G\) is a soluble group. The system of all subgroups \(H \leq G\), for which the quotient modules \(A/C_{A}(H)\) are not Noetherian \(\bf R\)-modules, satisfies the maximal condition. This condition is called the condition \(max-nnd\). The structure of the group \(G\) is described. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/650 |
| work_keys_str_mv |
AT dashkovaoyu onmodulesovergroupringsofsolublegroupswithcommutativeringofscalars |
| first_indexed |
2025-12-02T15:43:04Z |
| last_indexed |
2025-12-02T15:43:04Z |
| _version_ |
1850411775627886592 |