On modules over group rings of soluble groups with commutative ring of scalars

The author studies an \(\bf R\)\(G\)-module \(A\) such that \(\bf R\) is a commutative ring, \(A/C_{A}(G)\) is not a Noetherian \(\bf R\)-module,  \(C_{G}(A)=1\), \(G\) is a soluble group. The system of all subgroups \(H \leq G\), for which the quotient modules \(A/C_{A}(H)\) are not Noetherian  \(\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Dashkova, O. Yu.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/650
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-650
record_format ojs
spelling admjournalluguniveduua-article-6502018-04-04T09:17:05Z On modules over group rings of soluble groups with commutative ring of scalars Dashkova, O. Yu. a maximal condition on subgroups, a Noetherian module, a soluble group 20F16; 20H25 The author studies an \(\bf R\)\(G\)-module \(A\) such that \(\bf R\) is a commutative ring, \(A/C_{A}(G)\) is not a Noetherian \(\bf R\)-module,  \(C_{G}(A)=1\), \(G\) is a soluble group. The system of all subgroups \(H \leq G\), for which the quotient modules \(A/C_{A}(H)\) are not Noetherian  \(\bf R\)-modules, satisfies the maximal  condition. This condition  is called the condition \(max-nnd\). The structure of the group \(G\) is described. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/650 Algebra and Discrete Mathematics; Vol 10, No 2 (2010) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/650/184 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:17:05Z
collection OJS
language English
topic a maximal condition on subgroups
a Noetherian module
a soluble group
20F16
20H25
spellingShingle a maximal condition on subgroups
a Noetherian module
a soluble group
20F16
20H25
Dashkova, O. Yu.
On modules over group rings of soluble groups with commutative ring of scalars
topic_facet a maximal condition on subgroups
a Noetherian module
a soluble group
20F16
20H25
format Article
author Dashkova, O. Yu.
author_facet Dashkova, O. Yu.
author_sort Dashkova, O. Yu.
title On modules over group rings of soluble groups with commutative ring of scalars
title_short On modules over group rings of soluble groups with commutative ring of scalars
title_full On modules over group rings of soluble groups with commutative ring of scalars
title_fullStr On modules over group rings of soluble groups with commutative ring of scalars
title_full_unstemmed On modules over group rings of soluble groups with commutative ring of scalars
title_sort on modules over group rings of soluble groups with commutative ring of scalars
description The author studies an \(\bf R\)\(G\)-module \(A\) such that \(\bf R\) is a commutative ring, \(A/C_{A}(G)\) is not a Noetherian \(\bf R\)-module,  \(C_{G}(A)=1\), \(G\) is a soluble group. The system of all subgroups \(H \leq G\), for which the quotient modules \(A/C_{A}(H)\) are not Noetherian  \(\bf R\)-modules, satisfies the maximal  condition. This condition  is called the condition \(max-nnd\). The structure of the group \(G\) is described.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/650
work_keys_str_mv AT dashkovaoyu onmodulesovergroupringsofsolublegroupswithcommutativeringofscalars
first_indexed 2025-12-02T15:43:04Z
last_indexed 2025-12-02T15:43:04Z
_version_ 1850411775627886592