A generalization of supplemented modules

Let \(R\) be an arbitrary ring with identity and \(M\) a right \(R\)-module. In this paper, we introduce a class of modules which is an analogous of  \(\delta\)-supplemented modules defined by Kosan. The module \(M\) is called  principally \(\delta\)-supplemented, for all \(m\in M\) there exists a s...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Inankil, Hatice, Halıcıoglu, Sait, Harmanci, Abdullah
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/660
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(R\) be an arbitrary ring with identity and \(M\) a right \(R\)-module. In this paper, we introduce a class of modules which is an analogous of  \(\delta\)-supplemented modules defined by Kosan. The module \(M\) is called  principally \(\delta\)-supplemented, for all \(m\in M\) there exists a submodule \(A\) of \(M\) with \(M = mR + A\) and \((mR)\cap A\) \(\delta\)-small in \(A\). We prove that some results of \(\delta\)-supplemented modules can be extended to principally \(\delta\)-supplemented modules for this general settings. We supply some examples showing that there are principally \(\delta\)-supplemented modules but not \(\delta\)-supplemented. We also introduce principally \(\delta\)-semiperfect modules as a generalization of \(\delta\)-semiperfect modules and investigate their properties.