On partial Galois Azumaya extensions

Let \(\alpha\) be a globalizable partial action of a finite group \(G\) over a unital ring \(R\), \(A=R\star_\alpha G\) the corresponding partial skew group ring, \(R^\alpha\) the subring of the \(\alpha\)-invariant elements of \(R\) and \(\alpha^\star\) the partial inner action of \(G\) (induced by...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Freitas, Daiane, Paques, Antonio
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/666
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-666
record_format ojs
spelling admjournalluguniveduua-article-6662018-04-04T09:24:09Z On partial Galois Azumaya extensions Freitas, Daiane Paques, Antonio partial group action, partial skew group ring, partial Galois extension, partial Galois Azumaya extension 16H05, 16S35, 16W22 Let \(\alpha\) be a globalizable partial action of a finite group \(G\) over a unital ring \(R\), \(A=R\star_\alpha G\) the corresponding partial skew group ring, \(R^\alpha\) the subring of the \(\alpha\)-invariant elements of \(R\) and \(\alpha^\star\) the partial inner action of \(G\) (induced by \(\alpha\)) on the centralizer \(C_A(R)\) of \(R\) in \(A\). In this paper we present equivalent conditions to characterize \(R\) as an \(\alpha\)-partial Galois Azumaya extension of \(R^\alpha\) and \(C_A(R)\) as an \(\alpha^\star\)-partial Galois extension of the center \(C(A)\) of \(A\). In particular, we extend to the setting of partial group actions similar results due to R. Alfaro and G. Szeto [1,2,3]. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/666 Algebra and Discrete Mathematics; Vol 11, No 2 (2011) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/666/200 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:24:09Z
collection OJS
language English
topic partial group action
partial skew group ring
partial Galois extension
partial Galois Azumaya extension
16H05
16S35
16W22
spellingShingle partial group action
partial skew group ring
partial Galois extension
partial Galois Azumaya extension
16H05
16S35
16W22
Freitas, Daiane
Paques, Antonio
On partial Galois Azumaya extensions
topic_facet partial group action
partial skew group ring
partial Galois extension
partial Galois Azumaya extension
16H05
16S35
16W22
format Article
author Freitas, Daiane
Paques, Antonio
author_facet Freitas, Daiane
Paques, Antonio
author_sort Freitas, Daiane
title On partial Galois Azumaya extensions
title_short On partial Galois Azumaya extensions
title_full On partial Galois Azumaya extensions
title_fullStr On partial Galois Azumaya extensions
title_full_unstemmed On partial Galois Azumaya extensions
title_sort on partial galois azumaya extensions
description Let \(\alpha\) be a globalizable partial action of a finite group \(G\) over a unital ring \(R\), \(A=R\star_\alpha G\) the corresponding partial skew group ring, \(R^\alpha\) the subring of the \(\alpha\)-invariant elements of \(R\) and \(\alpha^\star\) the partial inner action of \(G\) (induced by \(\alpha\)) on the centralizer \(C_A(R)\) of \(R\) in \(A\). In this paper we present equivalent conditions to characterize \(R\) as an \(\alpha\)-partial Galois Azumaya extension of \(R^\alpha\) and \(C_A(R)\) as an \(\alpha^\star\)-partial Galois extension of the center \(C(A)\) of \(A\). In particular, we extend to the setting of partial group actions similar results due to R. Alfaro and G. Szeto [1,2,3].
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/666
work_keys_str_mv AT freitasdaiane onpartialgaloisazumayaextensions
AT paquesantonio onpartialgaloisazumayaextensions
first_indexed 2025-12-02T15:36:35Z
last_indexed 2025-12-02T15:36:35Z
_version_ 1850411366746161152