Diagonalizability theorem for matrices over certain domains
It is proved that \(R\) is a commutative adequate domain, then \(R\) is the domain of stable range 1 in localization in multiplicative closed set which corresponds s-torsion in the sense of Komarnitskii.
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | Zabavsky, Bogdan, Domsha, Olga |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/676 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
Diagonalizability theorem for matrices over certain domains
von: Zabavsky, Bogdan, et al.
Veröffentlicht: (2018) -
A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring
von: Zabavsky, B. V., et al.
Veröffentlicht: (2015) -
Diagonalizability theorems for matrices over rings with finite stable range
von: Zabavsky, Bogdan
Veröffentlicht: (2018) -
Diagonalizability theorems for matrices over rings with finite stable range
von: Zabavsky, Bogdan
Veröffentlicht: (2018) -
A criterion of elementary divisor domain for distributive domains
von: Bokhonko, Vasylyna, et al.
Veröffentlicht: (2017)