Quasi-duo Partial skew polynomial rings

In this paper we consider rings \(R\) with a partial action \(\alpha\) of \(\mathbb{Z}\) on \(R\). We give necessary and sufficient conditions for partial skew polynomial rings and partial skew Laurent polynomial rings to be quasi-duo rings and in this case we describe the Jacobson radical. Moreover...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Cortes, Wagner, Ferrero, Miguel, Gobbi, Luciane
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/681
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543263469600768
author Cortes, Wagner
Ferrero, Miguel
Gobbi, Luciane
author_facet Cortes, Wagner
Ferrero, Miguel
Gobbi, Luciane
author_sort Cortes, Wagner
baseUrl_str
collection OJS
datestamp_date 2018-04-04T09:31:27Z
description In this paper we consider rings \(R\) with a partial action \(\alpha\) of \(\mathbb{Z}\) on \(R\). We give necessary and sufficient conditions for partial skew polynomial rings and partial skew Laurent polynomial rings to be quasi-duo rings and in this case we describe the Jacobson radical. Moreover, we give some examples to show that our results are not an easy generalization of the global case.
first_indexed 2026-02-08T08:00:27Z
format Article
id admjournalluguniveduua-article-681
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T08:00:27Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-6812018-04-04T09:31:27Z Quasi-duo Partial skew polynomial rings Cortes, Wagner Ferrero, Miguel Gobbi, Luciane partial action; quasi-duo; Jacobson radical; partial skew polynomial rings 16S36; 16S35 In this paper we consider rings \(R\) with a partial action \(\alpha\) of \(\mathbb{Z}\) on \(R\). We give necessary and sufficient conditions for partial skew polynomial rings and partial skew Laurent polynomial rings to be quasi-duo rings and in this case we describe the Jacobson radical. Moreover, we give some examples to show that our results are not an easy generalization of the global case. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/681 Algebra and Discrete Mathematics; Vol 12, No 2 (2011) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/681/215 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle partial action
quasi-duo
Jacobson radical
partial skew polynomial rings
16S36
16S35
Cortes, Wagner
Ferrero, Miguel
Gobbi, Luciane
Quasi-duo Partial skew polynomial rings
title Quasi-duo Partial skew polynomial rings
title_full Quasi-duo Partial skew polynomial rings
title_fullStr Quasi-duo Partial skew polynomial rings
title_full_unstemmed Quasi-duo Partial skew polynomial rings
title_short Quasi-duo Partial skew polynomial rings
title_sort quasi-duo partial skew polynomial rings
topic partial action
quasi-duo
Jacobson radical
partial skew polynomial rings
16S36
16S35
topic_facet partial action
quasi-duo
Jacobson radical
partial skew polynomial rings
16S36
16S35
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/681
work_keys_str_mv AT corteswagner quasiduopartialskewpolynomialrings
AT ferreromiguel quasiduopartialskewpolynomialrings
AT gobbiluciane quasiduopartialskewpolynomialrings