Some (Hopf) algebraic properties of circulant matrices

We study some (Hopf) algebraic properties of circulant matrices, inspired by the fact that the algebra of circulant \(n\times n\) matrices is isomorphic to the group algebra of the cyclic group with \(n\) elements. We introduce also a class of matrices that generalize both circulant and skew circula...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Albuquerque, Helena, Panaite, Florin
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/688
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543038611914752
author Albuquerque, Helena
Panaite, Florin
author_facet Albuquerque, Helena
Panaite, Florin
author_sort Albuquerque, Helena
baseUrl_str
collection OJS
datestamp_date 2018-04-04T09:42:12Z
description We study some (Hopf) algebraic properties of circulant matrices, inspired by the fact that the algebra of circulant \(n\times n\) matrices is isomorphic to the group algebra of the cyclic group with \(n\) elements. We introduce also a class of matrices that generalize both circulant and skew circulant matrices, and for which the eigenvalues and eigenvectors can be read directly from their entries.
first_indexed 2025-12-02T15:40:39Z
format Article
id admjournalluguniveduua-article-688
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:40:39Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-6882018-04-04T09:42:12Z Some (Hopf) algebraic properties of circulant matrices Albuquerque, Helena Panaite, Florin Hopf algebras; (generalized) circulant matrices; Brandt algebras 15B05; 16W30 We study some (Hopf) algebraic properties of circulant matrices, inspired by the fact that the algebra of circulant \(n\times n\) matrices is isomorphic to the group algebra of the cyclic group with \(n\) elements. We introduce also a class of matrices that generalize both circulant and skew circulant matrices, and for which the eigenvalues and eigenvectors can be read directly from their entries. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/688 Algebra and Discrete Mathematics; Vol 13, No 1 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/688/222 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle Hopf algebras
(generalized) circulant matrices
Brandt algebras
15B05
16W30
Albuquerque, Helena
Panaite, Florin
Some (Hopf) algebraic properties of circulant matrices
title Some (Hopf) algebraic properties of circulant matrices
title_full Some (Hopf) algebraic properties of circulant matrices
title_fullStr Some (Hopf) algebraic properties of circulant matrices
title_full_unstemmed Some (Hopf) algebraic properties of circulant matrices
title_short Some (Hopf) algebraic properties of circulant matrices
title_sort some (hopf) algebraic properties of circulant matrices
topic Hopf algebras
(generalized) circulant matrices
Brandt algebras
15B05
16W30
topic_facet Hopf algebras
(generalized) circulant matrices
Brandt algebras
15B05
16W30
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/688
work_keys_str_mv AT albuquerquehelena somehopfalgebraicpropertiesofcirculantmatrices
AT panaiteflorin somehopfalgebraicpropertiesofcirculantmatrices