Ultrafilters on \(G\)-spaces
For a discrete group \(G\) and a discrete \(G\)-space \(X\), we identify the Stone-Cech compactifications \(\beta G\) and \(\beta X\) with the sets of all ultrafilters on \(G\) and \(X\), and apply the natural action of \(\beta G\) on \(\beta X\) to characterize large, thick, thin, sparse and scatte...
Gespeichert in:
| Datum: | 2015 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2015
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/69 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Zusammenfassung: | For a discrete group \(G\) and a discrete \(G\)-space \(X\), we identify the Stone-Cech compactifications \(\beta G\) and \(\beta X\) with the sets of all ultrafilters on \(G\) and \(X\), and apply the natural action of \(\beta G\) on \(\beta X\) to characterize large, thick, thin, sparse and scattered subsets of \(X\). We use \(G\)-invariant partitions and colorings to define \(G\)-selective and \(G\)-Ramsey ultrafilters on \(X\). We show that, in contrast to the set-theoretical case, these two classes of ultrafilters are distinct. We consider also universally thin ultrafilters on \(\omega\), the \(T\)-points, and study interrelations between these ultrafilters and some classical ultrafilters on \(\omega\). |
|---|