Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups

A Cayley graph \(X\)\(=\)Cay\((G,S)\) is called {\it normal} for \(G\) if the right regular representation \(R(G)\)  of \(G\) is normal in the full automorphism group Aut\((X)\) of \(X\). In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group \(...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Author: Ghasemi, Mohsen
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/692
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543398340591616
author Ghasemi, Mohsen
author_facet Ghasemi, Mohsen
author_sort Ghasemi, Mohsen
baseUrl_str
collection OJS
datestamp_date 2018-04-04T09:42:12Z
description A Cayley graph \(X\)\(=\)Cay\((G,S)\) is called {\it normal} for \(G\) if the right regular representation \(R(G)\)  of \(G\) is normal in the full automorphism group Aut\((X)\) of \(X\). In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group \(G\) are normal when \((|G|, 2)=(|G|,3)=1\), and \(X\) is not isomorphic to either Cay\((G,S)\), where \(|G|=5^n\), and \(|\)Aut(X)\(|\)\(=\)\(2^m.3.5^n\), where \(m \in \{2,3\}\) and \(n\geq 3\), or Cay\((G,S)\) where \(|G|=5q^n\) (\(q\) is prime) and \(|{\hbox{Aut}}(X)|=2^m.3.5.q^n\), where \(q\geq 7\),  \(m \in \{2,3\}\) and \(n\geq 1\).
first_indexed 2025-12-02T15:43:10Z
format Article
id admjournalluguniveduua-article-692
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:43:10Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-6922018-04-04T09:42:12Z Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups Ghasemi, Mohsen Cayley graph, normal Cayley graph, minimal nonabelian group 05C25, 20B25 A Cayley graph \(X\)\(=\)Cay\((G,S)\) is called {\it normal} for \(G\) if the right regular representation \(R(G)\)  of \(G\) is normal in the full automorphism group Aut\((X)\) of \(X\). In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group \(G\) are normal when \((|G|, 2)=(|G|,3)=1\), and \(X\) is not isomorphic to either Cay\((G,S)\), where \(|G|=5^n\), and \(|\)Aut(X)\(|\)\(=\)\(2^m.3.5^n\), where \(m \in \{2,3\}\) and \(n\geq 3\), or Cay\((G,S)\) where \(|G|=5q^n\) (\(q\) is prime) and \(|{\hbox{Aut}}(X)|=2^m.3.5.q^n\), where \(q\geq 7\),  \(m \in \{2,3\}\) and \(n\geq 1\). Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/692 Algebra and Discrete Mathematics; Vol 13, No 1 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/692/225 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle Cayley graph
normal Cayley graph
minimal nonabelian group
05C25
20B25
Ghasemi, Mohsen
Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
title Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
title_full Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
title_fullStr Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
title_full_unstemmed Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
title_short Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
title_sort automorphism groups of tetravalent cayley graphs on minimal non-abelian groups
topic Cayley graph
normal Cayley graph
minimal nonabelian group
05C25
20B25
topic_facet Cayley graph
normal Cayley graph
minimal nonabelian group
05C25
20B25
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/692
work_keys_str_mv AT ghasemimohsen automorphismgroupsoftetravalentcayleygraphsonminimalnonabeliangroups