Partitions of groups into sparse subsets

A subset \(A\) of a group \(G\) is called sparse if, for every infinite subset \(X\) of \(G\), there exists a finite subset \(F\subset X\), such that \(\bigcap_{x\in F} xA\) is finite. We denote by \(\eta(G)\) the minimal cardinal such that \(G\) can be partitioned in \(\eta(G)\) sparse subsets. If...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Protasov, Igor
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543265285734400
author Protasov, Igor
author_facet Protasov, Igor
author_sort Protasov, Igor
baseUrl_str
collection OJS
datestamp_date 2018-04-04T09:42:12Z
description A subset \(A\) of a group \(G\) is called sparse if, for every infinite subset \(X\) of \(G\), there exists a finite subset \(F\subset X\), such that \(\bigcap_{x\in F} xA\) is finite. We denote by \(\eta(G)\) the minimal cardinal such that \(G\) can be partitioned in \(\eta(G)\) sparse subsets. If \(|G| > (\kappa^+)^{\aleph_0}\) then \(\eta(G) > \kappa\), if  \(|G| \leqslant \kappa^+\) then \(\eta(G) \leqslant \kappa\).  We show also that \(cov(A) \geqslant cf|G|\) for each sparse subset \(A\) of an infinite group \(G\), where \(cov(A)=\min\{|X|: G = XA\}.\)
first_indexed 2025-12-02T15:32:08Z
format Article
id admjournalluguniveduua-article-695
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:32:08Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-6952018-04-04T09:42:12Z Partitions of groups into sparse subsets Protasov, Igor partition of a group, sparse subset of a group 03E75, 20F99, 20K99 A subset \(A\) of a group \(G\) is called sparse if, for every infinite subset \(X\) of \(G\), there exists a finite subset \(F\subset X\), such that \(\bigcap_{x\in F} xA\) is finite. We denote by \(\eta(G)\) the minimal cardinal such that \(G\) can be partitioned in \(\eta(G)\) sparse subsets. If \(|G| > (\kappa^+)^{\aleph_0}\) then \(\eta(G) > \kappa\), if  \(|G| \leqslant \kappa^+\) then \(\eta(G) \leqslant \kappa\).  We show also that \(cov(A) \geqslant cf|G|\) for each sparse subset \(A\) of an infinite group \(G\), where \(cov(A)=\min\{|X|: G = XA\}.\) Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695 Algebra and Discrete Mathematics; Vol 13, No 1 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695/228 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle partition of a group
sparse subset of a group
03E75
20F99
20K99
Protasov, Igor
Partitions of groups into sparse subsets
title Partitions of groups into sparse subsets
title_full Partitions of groups into sparse subsets
title_fullStr Partitions of groups into sparse subsets
title_full_unstemmed Partitions of groups into sparse subsets
title_short Partitions of groups into sparse subsets
title_sort partitions of groups into sparse subsets
topic partition of a group
sparse subset of a group
03E75
20F99
20K99
topic_facet partition of a group
sparse subset of a group
03E75
20F99
20K99
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/695
work_keys_str_mv AT protasovigor partitionsofgroupsintosparsesubsets