On factorizations of limited solubly \(\omega\)-saturated formations
If \(\frak{F}=\frak{F}_1\ldots\frak{F}_t\) is the product of the formations \(\frak{F}_1,\ldots,\frak{F}_t\) and \(\frak{F}\ne\frak{F}_1\ldots\frak{F}_{i-1}\frak{F}_{i+1}\ldots\frak{F}_t\) for all \(i=1,\ldots,t\), then we call this product a non-cancellative factorization of the formation \(\frak{...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/705 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | If \(\frak{F}=\frak{F}_1\ldots\frak{F}_t\) is the product of the formations \(\frak{F}_1,\ldots,\frak{F}_t\) and \(\frak{F}\ne\frak{F}_1\ldots\frak{F}_{i-1}\frak{F}_{i+1}\ldots\frak{F}_t\) for all \(i=1,\ldots,t\), then we call this product a non-cancellative factorization of the formation \(\frak{F}\). In this paper we gives a description of factorizable limited solubly \(\omega\)-saturated formations. |
|---|