On factorizations of limited solubly \(\omega\)-saturated formations
If \(\frak{F}=\frak{F}_1\ldots\frak{F}_t\) is the product of the formations \(\frak{F}_1,\ldots,\frak{F}_t\) and \(\frak{F}\ne\frak{F}_1\ldots\frak{F}_{i-1}\frak{F}_{i+1}\ldots\frak{F}_t\) for all \(i=1,\ldots,t\), then we call this product a non-cancellative factorization of the formation \(\frak{...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/705 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-705 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-7052018-04-04T09:53:26Z On factorizations of limited solubly \(\omega\)-saturated formations Selkin, Vadim M. factorizations, solubly \(\omega\)-saturated formation, composition \(\omega\)-satelitte, one-generated formation 20D10 If \(\frak{F}=\frak{F}_1\ldots\frak{F}_t\) is the product of the formations \(\frak{F}_1,\ldots,\frak{F}_t\) and \(\frak{F}\ne\frak{F}_1\ldots\frak{F}_{i-1}\frak{F}_{i+1}\ldots\frak{F}_t\) for all \(i=1,\ldots,t\), then we call this product a non-cancellative factorization of the formation \(\frak{F}\). In this paper we gives a description of factorizable limited solubly \(\omega\)-saturated formations. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/705 Algebra and Discrete Mathematics; Vol 13, No 2 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/705/238 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-04-04T09:53:26Z |
| collection |
OJS |
| language |
English |
| topic |
factorizations solubly \(\omega\)-saturated formation composition \(\omega\)-satelitte one-generated formation 20D10 |
| spellingShingle |
factorizations solubly \(\omega\)-saturated formation composition \(\omega\)-satelitte one-generated formation 20D10 Selkin, Vadim M. On factorizations of limited solubly \(\omega\)-saturated formations |
| topic_facet |
factorizations solubly \(\omega\)-saturated formation composition \(\omega\)-satelitte one-generated formation 20D10 |
| format |
Article |
| author |
Selkin, Vadim M. |
| author_facet |
Selkin, Vadim M. |
| author_sort |
Selkin, Vadim M. |
| title |
On factorizations of limited solubly \(\omega\)-saturated formations |
| title_short |
On factorizations of limited solubly \(\omega\)-saturated formations |
| title_full |
On factorizations of limited solubly \(\omega\)-saturated formations |
| title_fullStr |
On factorizations of limited solubly \(\omega\)-saturated formations |
| title_full_unstemmed |
On factorizations of limited solubly \(\omega\)-saturated formations |
| title_sort |
on factorizations of limited solubly \(\omega\)-saturated formations |
| description |
If \(\frak{F}=\frak{F}_1\ldots\frak{F}_t\) is the product of the formations \(\frak{F}_1,\ldots,\frak{F}_t\) and \(\frak{F}\ne\frak{F}_1\ldots\frak{F}_{i-1}\frak{F}_{i+1}\ldots\frak{F}_t\) for all \(i=1,\ldots,t\), then we call this product a non-cancellative factorization of the formation \(\frak{F}\). In this paper we gives a description of factorizable limited solubly \(\omega\)-saturated formations. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/705 |
| work_keys_str_mv |
AT selkinvadimm onfactorizationsoflimitedsolublyomegasaturatedformations |
| first_indexed |
2025-12-02T15:27:26Z |
| last_indexed |
2025-12-02T15:27:26Z |
| _version_ |
1850411884680839168 |