On factorizations of limited solubly \(\omega\)-saturated formations

If \(\frak{F}=\frak{F}_1\ldots\frak{F}_t\) is the product of the formations \(\frak{F}_1,\ldots,\frak{F}_t\) and \(\frak{F}\ne\frak{F}_1\ldots\frak{F}_{i-1}\frak{F}_{i+1}\ldots\frak{F}_t\) for all \(i=1,\ldots,t\), then we call  this product a non-cancellative factorization of the formation \(\frak{...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Selkin, Vadim M.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/705
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-705
record_format ojs
spelling admjournalluguniveduua-article-7052018-04-04T09:53:26Z On factorizations of limited solubly \(\omega\)-saturated formations Selkin, Vadim M. factorizations, solubly \(\omega\)-saturated formation, composition \(\omega\)-satelitte, one-generated formation 20D10 If \(\frak{F}=\frak{F}_1\ldots\frak{F}_t\) is the product of the formations \(\frak{F}_1,\ldots,\frak{F}_t\) and \(\frak{F}\ne\frak{F}_1\ldots\frak{F}_{i-1}\frak{F}_{i+1}\ldots\frak{F}_t\) for all \(i=1,\ldots,t\), then we call  this product a non-cancellative factorization of the formation \(\frak{F}\). In this paper we gives  a description of factorizable limited solubly \(\omega\)-saturated formations. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/705 Algebra and Discrete Mathematics; Vol 13, No 2 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/705/238 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:53:26Z
collection OJS
language English
topic factorizations
solubly \(\omega\)-saturated formation
composition \(\omega\)-satelitte
one-generated formation
20D10
spellingShingle factorizations
solubly \(\omega\)-saturated formation
composition \(\omega\)-satelitte
one-generated formation
20D10
Selkin, Vadim M.
On factorizations of limited solubly \(\omega\)-saturated formations
topic_facet factorizations
solubly \(\omega\)-saturated formation
composition \(\omega\)-satelitte
one-generated formation
20D10
format Article
author Selkin, Vadim M.
author_facet Selkin, Vadim M.
author_sort Selkin, Vadim M.
title On factorizations of limited solubly \(\omega\)-saturated formations
title_short On factorizations of limited solubly \(\omega\)-saturated formations
title_full On factorizations of limited solubly \(\omega\)-saturated formations
title_fullStr On factorizations of limited solubly \(\omega\)-saturated formations
title_full_unstemmed On factorizations of limited solubly \(\omega\)-saturated formations
title_sort on factorizations of limited solubly \(\omega\)-saturated formations
description If \(\frak{F}=\frak{F}_1\ldots\frak{F}_t\) is the product of the formations \(\frak{F}_1,\ldots,\frak{F}_t\) and \(\frak{F}\ne\frak{F}_1\ldots\frak{F}_{i-1}\frak{F}_{i+1}\ldots\frak{F}_t\) for all \(i=1,\ldots,t\), then we call  this product a non-cancellative factorization of the formation \(\frak{F}\). In this paper we gives  a description of factorizable limited solubly \(\omega\)-saturated formations.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/705
work_keys_str_mv AT selkinvadimm onfactorizationsoflimitedsolublyomegasaturatedformations
first_indexed 2025-12-02T15:27:26Z
last_indexed 2025-12-02T15:27:26Z
_version_ 1850411884680839168