Symmetric modules over their endomorphism rings

Let \(R\) be an arbitrary ring with identity and \(M\) a right\(R\)-module with \(S=End_R(M)\). In this paper, we study right\(R\)-modules \(M\) having the property for \(f,g \in End_R(M)\) andfor \(m\in M\), the condition \(fgm = 0\) implies \(gfm = 0\). We provethat some results of symmetric rings...

Full description

Saved in:
Bibliographic Details
Date:2015
Main Authors: Ungor, Burcu, Kurtulmaz, Yosum, Halicioglu, Sait, Harmanci, Abdullah
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2015
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/71
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543266535636992
author Ungor, Burcu
Kurtulmaz, Yosum
Halicioglu, Sait
Harmanci, Abdullah
author_facet Ungor, Burcu
Kurtulmaz, Yosum
Halicioglu, Sait
Harmanci, Abdullah
author_sort Ungor, Burcu
baseUrl_str
collection OJS
datestamp_date 2015-09-28T11:22:08Z
description Let \(R\) be an arbitrary ring with identity and \(M\) a right\(R\)-module with \(S=End_R(M)\). In this paper, we study right\(R\)-modules \(M\) having the property for \(f,g \in End_R(M)\) andfor \(m\in M\), the condition \(fgm = 0\) implies \(gfm = 0\). We provethat some results of symmetric rings can be extended to symmetricmodules for this general setting.
first_indexed 2025-12-02T15:32:15Z
format Article
id admjournalluguniveduua-article-71
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:32:15Z
publishDate 2015
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-712015-09-28T11:22:08Z Symmetric modules over their endomorphism rings Ungor, Burcu Kurtulmaz, Yosum Halicioglu, Sait Harmanci, Abdullah symmetric modules, reduced modules, rigid modules, semicommutative modules, abelian modules, Rickart modules, principally projective modules 13C99, 16D80 Let \(R\) be an arbitrary ring with identity and \(M\) a right\(R\)-module with \(S=End_R(M)\). In this paper, we study right\(R\)-modules \(M\) having the property for \(f,g \in End_R(M)\) andfor \(m\in M\), the condition \(fgm = 0\) implies \(gfm = 0\). We provethat some results of symmetric rings can be extended to symmetricmodules for this general setting. Lugansk National Taras Shevchenko University 2015-09-28 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/71 Algebra and Discrete Mathematics; Vol 19, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/71/20 Copyright (c) 2015 Algebra and Discrete Mathematics
spellingShingle symmetric modules
reduced modules
rigid modules
semicommutative modules
abelian modules
Rickart modules
principally projective modules
13C99
16D80
Ungor, Burcu
Kurtulmaz, Yosum
Halicioglu, Sait
Harmanci, Abdullah
Symmetric modules over their endomorphism rings
title Symmetric modules over their endomorphism rings
title_full Symmetric modules over their endomorphism rings
title_fullStr Symmetric modules over their endomorphism rings
title_full_unstemmed Symmetric modules over their endomorphism rings
title_short Symmetric modules over their endomorphism rings
title_sort symmetric modules over their endomorphism rings
topic symmetric modules
reduced modules
rigid modules
semicommutative modules
abelian modules
Rickart modules
principally projective modules
13C99
16D80
topic_facet symmetric modules
reduced modules
rigid modules
semicommutative modules
abelian modules
Rickart modules
principally projective modules
13C99
16D80
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/71
work_keys_str_mv AT ungorburcu symmetricmodulesovertheirendomorphismrings
AT kurtulmazyosum symmetricmodulesovertheirendomorphismrings
AT halicioglusait symmetricmodulesovertheirendomorphismrings
AT harmanciabdullah symmetricmodulesovertheirendomorphismrings