On locally soluble \(\mathrm A \mathrm F \mathrm N\)-groups

Let \(A\) be an \({\mathbf{R}G}\)-module, where \(\bf R\) is a commutative ring, \(G\) is a locally soluble group, \(C_{G}(A)=1\), and each proper subgroup \(H\) of \(G\) for which \(A/C_{A}(H)\) is not a noetherian \(\bf R\)-module, is finitely generated. We describe the structure of a locally solu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Dashkova, Olga Yu.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/710
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-710
record_format ojs
spelling admjournalluguniveduua-article-7102018-04-04T09:58:22Z On locally soluble \(\mathrm A \mathrm F \mathrm N\)-groups Dashkova, Olga Yu. locally soluble group, noetherian module, group ring 20F19 Let \(A\) be an \({\mathbf{R}G}\)-module, where \(\bf R\) is a commutative ring, \(G\) is a locally soluble group, \(C_{G}(A)=1\), and each proper subgroup \(H\) of \(G\) for which \(A/C_{A}(H)\) is not a noetherian \(\bf R\)-module, is finitely generated. We describe the structure of a locally soluble group \(G\) with these conditions and the structure of \(G\) under consideration if \(G\) is a finitely generated soluble group and the quotient module \(A/C_{A}(G)\) is not a noetherian \(\bf R\)-module. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/710 Algebra and Discrete Mathematics; Vol 14, No 1 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/710/243 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:58:22Z
collection OJS
language English
topic locally soluble group
noetherian module
group ring
20F19
spellingShingle locally soluble group
noetherian module
group ring
20F19
Dashkova, Olga Yu.
On locally soluble \(\mathrm A \mathrm F \mathrm N\)-groups
topic_facet locally soluble group
noetherian module
group ring
20F19
format Article
author Dashkova, Olga Yu.
author_facet Dashkova, Olga Yu.
author_sort Dashkova, Olga Yu.
title On locally soluble \(\mathrm A \mathrm F \mathrm N\)-groups
title_short On locally soluble \(\mathrm A \mathrm F \mathrm N\)-groups
title_full On locally soluble \(\mathrm A \mathrm F \mathrm N\)-groups
title_fullStr On locally soluble \(\mathrm A \mathrm F \mathrm N\)-groups
title_full_unstemmed On locally soluble \(\mathrm A \mathrm F \mathrm N\)-groups
title_sort on locally soluble \(\mathrm a \mathrm f \mathrm n\)-groups
description Let \(A\) be an \({\mathbf{R}G}\)-module, where \(\bf R\) is a commutative ring, \(G\) is a locally soluble group, \(C_{G}(A)=1\), and each proper subgroup \(H\) of \(G\) for which \(A/C_{A}(H)\) is not a noetherian \(\bf R\)-module, is finitely generated. We describe the structure of a locally soluble group \(G\) with these conditions and the structure of \(G\) under consideration if \(G\) is a finitely generated soluble group and the quotient module \(A/C_{A}(G)\) is not a noetherian \(\bf R\)-module.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/710
work_keys_str_mv AT dashkovaolgayu onlocallysolublemathrmamathrmfmathrmngroups
first_indexed 2025-12-02T15:43:13Z
last_indexed 2025-12-02T15:43:13Z
_version_ 1850411783933657088