Inner automorphisms of Lie algebras related with generic \(2\times 2\) matrices

Let \(F_m=F_m(\text{var}(sl_2(K)))\) be the relatively free algebra of rank \(m\) in the variety of Lie algebras generated by the algebra \(sl_2(K)\) over a field \(K\) of characteristic 0. Translating an old result of Baker from 1901 we present a multiplication rule for the inner automorphisms of t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Drensky, Vesselin, Fındık, Şehmus
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/711
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543039003033600
author Drensky, Vesselin
Fındık, Şehmus
author_facet Drensky, Vesselin
Fındık, Şehmus
author_sort Drensky, Vesselin
baseUrl_str
collection OJS
datestamp_date 2018-04-04T09:58:22Z
description Let \(F_m=F_m(\text{var}(sl_2(K)))\) be the relatively free algebra of rank \(m\) in the variety of Lie algebras generated by the algebra \(sl_2(K)\) over a field \(K\) of characteristic 0. Translating an old result of Baker from 1901 we present a multiplication rule for the inner automorphisms of the completion \(\widehat{F_m}\) of \(F_m\) with respect to the formal power series topology. Our results are more precise for \(m=2\) when \(F_2\) is isomorphic to the Lie algebra \(L\) generated by two generic traceless \(2\times 2\) matrices. We give a complete description of the group of inner automorphisms of \(\widehat L\). As a consequence we obtain similar results for the automorphisms of the relatively free algebra \(F_m/F_m^{c+1}=F_m(\text{var}(sl_2(K))\cap {\mathfrak N}_c)\) in the subvariety of \(\text{var}(sl_2(K))\) consisting of all nilpotent algebras of class at most \(c\) in \(\text{var}(sl_2(K))\).
first_indexed 2025-12-02T15:40:44Z
format Article
id admjournalluguniveduua-article-711
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:40:44Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-7112018-04-04T09:58:22Z Inner automorphisms of Lie algebras related with generic \(2\times 2\) matrices Drensky, Vesselin Fındık, Şehmus free Lie algebras, generic matrices, inner automorphisms,Baker-Campbell-Hausdorff formula 17B01, 17B30, 17B40, 16R30 Let \(F_m=F_m(\text{var}(sl_2(K)))\) be the relatively free algebra of rank \(m\) in the variety of Lie algebras generated by the algebra \(sl_2(K)\) over a field \(K\) of characteristic 0. Translating an old result of Baker from 1901 we present a multiplication rule for the inner automorphisms of the completion \(\widehat{F_m}\) of \(F_m\) with respect to the formal power series topology. Our results are more precise for \(m=2\) when \(F_2\) is isomorphic to the Lie algebra \(L\) generated by two generic traceless \(2\times 2\) matrices. We give a complete description of the group of inner automorphisms of \(\widehat L\). As a consequence we obtain similar results for the automorphisms of the relatively free algebra \(F_m/F_m^{c+1}=F_m(\text{var}(sl_2(K))\cap {\mathfrak N}_c)\) in the subvariety of \(\text{var}(sl_2(K))\) consisting of all nilpotent algebras of class at most \(c\) in \(\text{var}(sl_2(K))\). Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/711 Algebra and Discrete Mathematics; Vol 14, No 1 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/711/244 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle free Lie algebras
generic matrices
inner automorphisms,Baker-Campbell-Hausdorff formula
17B01
17B30
17B40
16R30
Drensky, Vesselin
Fındık, Şehmus
Inner automorphisms of Lie algebras related with generic \(2\times 2\) matrices
title Inner automorphisms of Lie algebras related with generic \(2\times 2\) matrices
title_full Inner automorphisms of Lie algebras related with generic \(2\times 2\) matrices
title_fullStr Inner automorphisms of Lie algebras related with generic \(2\times 2\) matrices
title_full_unstemmed Inner automorphisms of Lie algebras related with generic \(2\times 2\) matrices
title_short Inner automorphisms of Lie algebras related with generic \(2\times 2\) matrices
title_sort inner automorphisms of lie algebras related with generic \(2\times 2\) matrices
topic free Lie algebras
generic matrices
inner automorphisms,Baker-Campbell-Hausdorff formula
17B01
17B30
17B40
16R30
topic_facet free Lie algebras
generic matrices
inner automorphisms,Baker-Campbell-Hausdorff formula
17B01
17B30
17B40
16R30
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/711
work_keys_str_mv AT drenskyvesselin innerautomorphismsofliealgebrasrelatedwithgeneric2times2matrices
AT fındıksehmus innerautomorphismsofliealgebrasrelatedwithgeneric2times2matrices