Invariants of finite solvable groups
The article contains the results about invariants of solvable groups with given structure of Sylow subgroups and information about the nilpotent \(\pi\)-length of \(\pi\)-solvable groups. Open questions are formulated.
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/714 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-714 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-7142018-04-04T09:58:22Z Invariants of finite solvable groups Monakhov, Victor Trofimuk, Alexander derived length, nilpotent lengths, \(p\) -length, \(\pi\)-length,nilpotent \(\pi\)-length, rank, \(p\)-rank, metacyclic group, bicyclic group, \(\pi\)-solvable group 20D10 The article contains the results about invariants of solvable groups with given structure of Sylow subgroups and information about the nilpotent \(\pi\)-length of \(\pi\)-solvable groups. Open questions are formulated. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/714 Algebra and Discrete Mathematics; Vol 14, No 1 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/714/pdf Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-04-04T09:58:22Z |
| collection |
OJS |
| language |
English |
| topic |
derived length nilpotent lengths \(p\) -length \(\pi\)-length,nilpotent \(\pi\)-length rank \(p\)-rank metacyclic group bicyclic group \(\pi\)-solvable group 20D10 |
| spellingShingle |
derived length nilpotent lengths \(p\) -length \(\pi\)-length,nilpotent \(\pi\)-length rank \(p\)-rank metacyclic group bicyclic group \(\pi\)-solvable group 20D10 Monakhov, Victor Trofimuk, Alexander Invariants of finite solvable groups |
| topic_facet |
derived length nilpotent lengths \(p\) -length \(\pi\)-length,nilpotent \(\pi\)-length rank \(p\)-rank metacyclic group bicyclic group \(\pi\)-solvable group 20D10 |
| format |
Article |
| author |
Monakhov, Victor Trofimuk, Alexander |
| author_facet |
Monakhov, Victor Trofimuk, Alexander |
| author_sort |
Monakhov, Victor |
| title |
Invariants of finite solvable groups |
| title_short |
Invariants of finite solvable groups |
| title_full |
Invariants of finite solvable groups |
| title_fullStr |
Invariants of finite solvable groups |
| title_full_unstemmed |
Invariants of finite solvable groups |
| title_sort |
invariants of finite solvable groups |
| description |
The article contains the results about invariants of solvable groups with given structure of Sylow subgroups and information about the nilpotent \(\pi\)-length of \(\pi\)-solvable groups. Open questions are formulated. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/714 |
| work_keys_str_mv |
AT monakhovvictor invariantsoffinitesolvablegroups AT trofimukalexander invariantsoffinitesolvablegroups |
| first_indexed |
2025-12-02T15:27:28Z |
| last_indexed |
2025-12-02T15:27:28Z |
| _version_ |
1850411885584711680 |