Invariants of finite solvable groups

The article contains the results about invariants of solvable groups with given structure of Sylow subgroups and  information about the nilpotent \(\pi\)-length of \(\pi\)-solvable groups. Open questions are formulated.

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Monakhov, Victor, Trofimuk, Alexander
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/714
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-714
record_format ojs
spelling admjournalluguniveduua-article-7142018-04-04T09:58:22Z Invariants of finite solvable groups Monakhov, Victor Trofimuk, Alexander derived length, nilpotent lengths, \(p\) -length, \(\pi\)-length,nilpotent \(\pi\)-length, rank, \(p\)-rank, metacyclic group, bicyclic group, \(\pi\)-solvable group 20D10 The article contains the results about invariants of solvable groups with given structure of Sylow subgroups and  information about the nilpotent \(\pi\)-length of \(\pi\)-solvable groups. Open questions are formulated. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/714 Algebra and Discrete Mathematics; Vol 14, No 1 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/714/pdf Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:58:22Z
collection OJS
language English
topic derived length
nilpotent lengths
\(p\) -length
\(\pi\)-length,nilpotent \(\pi\)-length
rank
\(p\)-rank
metacyclic group
bicyclic group
\(\pi\)-solvable group
20D10
spellingShingle derived length
nilpotent lengths
\(p\) -length
\(\pi\)-length,nilpotent \(\pi\)-length
rank
\(p\)-rank
metacyclic group
bicyclic group
\(\pi\)-solvable group
20D10
Monakhov, Victor
Trofimuk, Alexander
Invariants of finite solvable groups
topic_facet derived length
nilpotent lengths
\(p\) -length
\(\pi\)-length,nilpotent \(\pi\)-length
rank
\(p\)-rank
metacyclic group
bicyclic group
\(\pi\)-solvable group
20D10
format Article
author Monakhov, Victor
Trofimuk, Alexander
author_facet Monakhov, Victor
Trofimuk, Alexander
author_sort Monakhov, Victor
title Invariants of finite solvable groups
title_short Invariants of finite solvable groups
title_full Invariants of finite solvable groups
title_fullStr Invariants of finite solvable groups
title_full_unstemmed Invariants of finite solvable groups
title_sort invariants of finite solvable groups
description The article contains the results about invariants of solvable groups with given structure of Sylow subgroups and  information about the nilpotent \(\pi\)-length of \(\pi\)-solvable groups. Open questions are formulated.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/714
work_keys_str_mv AT monakhovvictor invariantsoffinitesolvablegroups
AT trofimukalexander invariantsoffinitesolvablegroups
first_indexed 2025-12-02T15:27:28Z
last_indexed 2025-12-02T15:27:28Z
_version_ 1850411885584711680