A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring

We prove that any commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring.

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Zabavsky, B. V., Gatalevych, A.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2015
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/72
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-72
record_format ojs
spelling admjournalluguniveduua-article-722015-09-28T11:22:08Z A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring Zabavsky, B. V. Gatalevych, A. Bezout domain, PM-ring, clean element, neat element, elementary divisor ring, stable range 1, neat range 1 13F99 We prove that any commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring. Lugansk National Taras Shevchenko University 2015-09-28 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/72 Algebra and Discrete Mathematics; Vol 19, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/72/21 Copyright (c) 2015 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2015-09-28T11:22:08Z
collection OJS
language English
topic Bezout domain
PM-ring
clean element
neat element
elementary divisor ring
stable range 1
neat range 1
13F99
spellingShingle Bezout domain
PM-ring
clean element
neat element
elementary divisor ring
stable range 1
neat range 1
13F99
Zabavsky, B. V.
Gatalevych, A.
A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring
topic_facet Bezout domain
PM-ring
clean element
neat element
elementary divisor ring
stable range 1
neat range 1
13F99
format Article
author Zabavsky, B. V.
Gatalevych, A.
author_facet Zabavsky, B. V.
Gatalevych, A.
author_sort Zabavsky, B. V.
title A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring
title_short A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring
title_full A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring
title_fullStr A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring
title_full_unstemmed A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring
title_sort commutative bezout \(pm^{\ast}\) domain is an elementary divisor ring
description We prove that any commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring.
publisher Lugansk National Taras Shevchenko University
publishDate 2015
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/72
work_keys_str_mv AT zabavskybv acommutativebezoutpmastdomainisanelementarydivisorring
AT gatalevycha acommutativebezoutpmastdomainisanelementarydivisorring
AT zabavskybv commutativebezoutpmastdomainisanelementarydivisorring
AT gatalevycha commutativebezoutpmastdomainisanelementarydivisorring
first_indexed 2025-12-02T15:44:51Z
last_indexed 2025-12-02T15:44:51Z
_version_ 1850411886860828672