A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring
We prove that any commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring.
Gespeichert in:
| Datum: | 2015 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2015
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/72 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
admjournalluguniveduua-article-72 |
|---|---|
| record_format |
ojs |
| spelling |
admjournalluguniveduua-article-722015-09-28T11:22:08Z A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring Zabavsky, B. V. Gatalevych, A. Bezout domain, PM-ring, clean element, neat element, elementary divisor ring, stable range 1, neat range 1 13F99 We prove that any commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring. Lugansk National Taras Shevchenko University 2015-09-28 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/72 Algebra and Discrete Mathematics; Vol 19, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/72/21 Copyright (c) 2015 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2015-09-28T11:22:08Z |
| collection |
OJS |
| language |
English |
| topic |
Bezout domain PM-ring clean element neat element elementary divisor ring stable range 1 neat range 1 13F99 |
| spellingShingle |
Bezout domain PM-ring clean element neat element elementary divisor ring stable range 1 neat range 1 13F99 Zabavsky, B. V. Gatalevych, A. A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring |
| topic_facet |
Bezout domain PM-ring clean element neat element elementary divisor ring stable range 1 neat range 1 13F99 |
| format |
Article |
| author |
Zabavsky, B. V. Gatalevych, A. |
| author_facet |
Zabavsky, B. V. Gatalevych, A. |
| author_sort |
Zabavsky, B. V. |
| title |
A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring |
| title_short |
A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring |
| title_full |
A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring |
| title_fullStr |
A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring |
| title_full_unstemmed |
A commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring |
| title_sort |
commutative bezout \(pm^{\ast}\) domain is an elementary divisor ring |
| description |
We prove that any commutative Bezout \(PM^{\ast}\) domain is an elementary divisor ring. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2015 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/72 |
| work_keys_str_mv |
AT zabavskybv acommutativebezoutpmastdomainisanelementarydivisorring AT gatalevycha acommutativebezoutpmastdomainisanelementarydivisorring AT zabavskybv commutativebezoutpmastdomainisanelementarydivisorring AT gatalevycha commutativebezoutpmastdomainisanelementarydivisorring |
| first_indexed |
2025-12-02T15:44:51Z |
| last_indexed |
2025-12-02T15:44:51Z |
| _version_ |
1850411886860828672 |