Reduction of matrices over Bezout domains of stable range 1 with Dubrovin’s condition in which maximal nonprincipal ideals are two-sides
It is proved that each matrix over Bezout domain of stable range 1 with Dubrovin's condition, in which every maximal nonprincipal ideals are tho-sides ideals, is equivalent to diagonal one with right total division of diagonal elements
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | Kysil, Tetyana, Zabavskiy, Bogdan, Domsha, Olga |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/722 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
Reduction of matrices over Bezout domains of stable range 1 with Dubrovin’s condition in which maximal nonprincipal ideals are two-sides
von: Kysil, T., et al.
Veröffentlicht: (2012) -
Finite intersection of valuation overrings of polynomial rings in at most three variables
von: Paudel, Lokendra
Veröffentlicht: (2024) -
Reduction of matrices over Bezout domains of stable range 1 with Dubrovin's condition in which maximal nonprincipal ideals are two-sides
von: T. Kysil, et al.
Veröffentlicht: (2012) -
Diagonalizability theorem for matrices over certain domains
von: Zabavsky, Bogdan, et al.
Veröffentlicht: (2018) -
Diagonalizability theorem for matrices over certain domains
von: Zabavsky, Bogdan, et al.
Veröffentlicht: (2018)