The symmetries of McCullough-Miller space

We prove that if \(W\) is the free product of at least four groups of order 2, then the automorphism group of the McCullough-Miller space corresponding to \(W\) is isomorphic to group of outer automorphisms of \(W\). We also prove that, for each integer \(n \geq 3\), the automorphism group of the hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Piggott, Adam
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/724
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-724
record_format ojs
spelling admjournalluguniveduua-article-7242018-04-04T10:03:23Z The symmetries of McCullough-Miller space Piggott, Adam Autmorphisms of groups; group actions on simplicial complexes; Coxeter groups; McCullough-Miller space; hypertrees 20E36; 05E18 We prove that if \(W\) is the free product of at least four groups of order 2, then the automorphism group of the McCullough-Miller space corresponding to \(W\) is isomorphic to group of outer automorphisms of \(W\). We also prove that, for each integer \(n \geq 3\), the automorphism group of the hypertree complex of rank \(n\) is isomorphic to the symmetric group of rank \(n\). Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/724 Algebra and Discrete Mathematics; Vol 14, No 2 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/724/256 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T10:03:23Z
collection OJS
language English
topic Autmorphisms of groups
group actions on simplicial complexes
Coxeter groups
McCullough-Miller space
hypertrees
20E36
05E18
spellingShingle Autmorphisms of groups
group actions on simplicial complexes
Coxeter groups
McCullough-Miller space
hypertrees
20E36
05E18
Piggott, Adam
The symmetries of McCullough-Miller space
topic_facet Autmorphisms of groups
group actions on simplicial complexes
Coxeter groups
McCullough-Miller space
hypertrees
20E36
05E18
format Article
author Piggott, Adam
author_facet Piggott, Adam
author_sort Piggott, Adam
title The symmetries of McCullough-Miller space
title_short The symmetries of McCullough-Miller space
title_full The symmetries of McCullough-Miller space
title_fullStr The symmetries of McCullough-Miller space
title_full_unstemmed The symmetries of McCullough-Miller space
title_sort symmetries of mccullough-miller space
description We prove that if \(W\) is the free product of at least four groups of order 2, then the automorphism group of the McCullough-Miller space corresponding to \(W\) is isomorphic to group of outer automorphisms of \(W\). We also prove that, for each integer \(n \geq 3\), the automorphism group of the hypertree complex of rank \(n\) is isomorphic to the symmetric group of rank \(n\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/724
work_keys_str_mv AT piggottadam thesymmetriesofmcculloughmillerspace
AT piggottadam symmetriesofmcculloughmillerspace
first_indexed 2025-12-02T15:43:15Z
last_indexed 2025-12-02T15:43:15Z
_version_ 1850411786139860992