On radical square zero rings
Let \(\Lambda\) be a connected left artinian ring with radical square zero and with \(n\) simple modules. If \(\Lambda\) is not self-injective, then we show that any module \(M\) with \(\operatorname{Ext}^i(M,\Lambda) = 0\) for \(1 \le i \le n+1\) is projective. We also determine the structure of t...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | Англійська |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/727 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| _version_ | 1856543267793928192 |
|---|---|
| author | Ringel, Claus Michael Xiong, Bao-Lin |
| author_facet | Ringel, Claus Michael Xiong, Bao-Lin |
| author_sort | Ringel, Claus Michael |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2018-04-04T10:03:23Z |
| description | Let \(\Lambda\) be a connected left artinian ring with radical square zero and with \(n\) simple modules. If \(\Lambda\) is not self-injective, then we show that any module \(M\) with \(\operatorname{Ext}^i(M,\Lambda) = 0\) for \(1 \le i \le n+1\) is projective. We also determine the structure of the artin algebras with radical square zero and \(n\) simple modules which have a non-projective module \(M\) such that \(\operatorname{Ext}^i(M,\Lambda) = 0\) for \(1 \le i \le n\). |
| first_indexed | 2025-12-02T15:32:20Z |
| format | Article |
| id | admjournalluguniveduua-article-727 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2025-12-02T15:32:20Z |
| publishDate | 2018 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-7272018-04-04T10:03:23Z On radical square zero rings Ringel, Claus Michael Xiong, Bao-Lin Artin algebras; left artinian rings; representations, modules; Gorenstein modules, CM modules; self-injective algebras; radical square zero algebras 16D90, 16G10; 16G70 Let \(\Lambda\) be a connected left artinian ring with radical square zero and with \(n\) simple modules. If \(\Lambda\) is not self-injective, then we show that any module \(M\) with \(\operatorname{Ext}^i(M,\Lambda) = 0\) for \(1 \le i \le n+1\) is projective. We also determine the structure of the artin algebras with radical square zero and \(n\) simple modules which have a non-projective module \(M\) such that \(\operatorname{Ext}^i(M,\Lambda) = 0\) for \(1 \le i \le n\). Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/727 Algebra and Discrete Mathematics; Vol 14, No 2 (2012) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/727/259 Copyright (c) 2018 Algebra and Discrete Mathematics |
| spellingShingle | Artin algebras; left artinian rings; representations modules; Gorenstein modules CM modules; self-injective algebras; radical square zero algebras 16D90 16G10; 16G70 Ringel, Claus Michael Xiong, Bao-Lin On radical square zero rings |
| title | On radical square zero rings |
| title_full | On radical square zero rings |
| title_fullStr | On radical square zero rings |
| title_full_unstemmed | On radical square zero rings |
| title_short | On radical square zero rings |
| title_sort | on radical square zero rings |
| topic | Artin algebras; left artinian rings; representations modules; Gorenstein modules CM modules; self-injective algebras; radical square zero algebras 16D90 16G10; 16G70 |
| topic_facet | Artin algebras; left artinian rings; representations modules; Gorenstein modules CM modules; self-injective algebras; radical square zero algebras 16D90 16G10; 16G70 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/727 |
| work_keys_str_mv | AT ringelclausmichael onradicalsquarezerorings AT xiongbaolin onradicalsquarezerorings |