Generalised triangle groups of type \((3,q,2)\)

If \(G\) is a group with a presentation of the form \(\langle x,y|x^3=y^q=W(x,y)^2=1\rangle\), then either \(G\) is virtually soluble or \(G\) contains a free subgroup of rank \(2\). This provides additional evidence in favour of a conjecture of Rosenberger.

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Howie, James
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/730
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543358030184448
author Howie, James
author_facet Howie, James
author_sort Howie, James
baseUrl_str
collection OJS
datestamp_date 2018-04-26T00:47:27Z
description If \(G\) is a group with a presentation of the form \(\langle x,y|x^3=y^q=W(x,y)^2=1\rangle\), then either \(G\) is virtually soluble or \(G\) contains a free subgroup of rank \(2\). This provides additional evidence in favour of a conjecture of Rosenberger.
first_indexed 2026-02-08T08:01:57Z
format Article
id admjournalluguniveduua-article-730
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T08:01:57Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-7302018-04-26T00:47:27Z Generalised triangle groups of type \((3,q,2)\) Howie, James Generalized triangle groups, Tits alternative 20F05, 20F06, 20E05 If \(G\) is a group with a presentation of the form \(\langle x,y|x^3=y^q=W(x,y)^2=1\rangle\), then either \(G\) is virtually soluble or \(G\) contains a free subgroup of rank \(2\). This provides additional evidence in favour of a conjecture of Rosenberger. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/730 Algebra and Discrete Mathematics; Vol 15, No 1 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/730/262 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle Generalized triangle groups
Tits alternative
20F05
20F06
20E05
Howie, James
Generalised triangle groups of type \((3,q,2)\)
title Generalised triangle groups of type \((3,q,2)\)
title_full Generalised triangle groups of type \((3,q,2)\)
title_fullStr Generalised triangle groups of type \((3,q,2)\)
title_full_unstemmed Generalised triangle groups of type \((3,q,2)\)
title_short Generalised triangle groups of type \((3,q,2)\)
title_sort generalised triangle groups of type \((3,q,2)\)
topic Generalized triangle groups
Tits alternative
20F05
20F06
20E05
topic_facet Generalized triangle groups
Tits alternative
20F05
20F06
20E05
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/730
work_keys_str_mv AT howiejames generalisedtrianglegroupsoftype3q2