On maximal and minimal linear matching property

The matching basis in field extentions is introduced by S. Eliahou and C. Lecouvey in [2]. In this paper we define the minimal and maximal linear matching property for field extensions and prove that if \(K\) is not algebraically closed, then \(K\) has minimal linear matching property. In this paper...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Aliabadi, M., Darafsheh, M. R.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/741
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:The matching basis in field extentions is introduced by S. Eliahou and C. Lecouvey in [2]. In this paper we define the minimal and maximal linear matching property for field extensions and prove that if \(K\) is not algebraically closed, then \(K\) has minimal linear matching property. In this paper we will prove that algebraic number fields have maximal linear matching property. We also give a shorter proof of a result established in [6] on the fundamental theorem of algebra.