Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)

In this work the closure operators of a category of modules \(R\)-Mod are studied. Every closure operator \(C\) of \(R\)-Mod defines two functions \( \mathcal{F}_1^{C}\) and \(\mathcal{F}_2^{C}\), which  in every module \(M\) distinguish the set of \(C\)-dense submodules  \(\mathcal{F}_1^{C}(M)\) an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Kashu, A. I.
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/744
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543359356633088
author Kashu, A. I.
author_facet Kashu, A. I.
author_sort Kashu, A. I.
baseUrl_str
collection OJS
datestamp_date 2018-04-26T00:55:03Z
description In this work the closure operators of a category of modules \(R\)-Mod are studied. Every closure operator \(C\) of \(R\)-Mod defines two functions \( \mathcal{F}_1^{C}\) and \(\mathcal{F}_2^{C}\), which  in every module \(M\) distinguish the set of \(C\)-dense submodules  \(\mathcal{F}_1^{C}(M)\) and the set of \(C\)-closed submodules \(\mathcal{F}_2^{C}(M)\). By means of these functions three types of closure operators are described: 1)weakly hereditary; 2)idempotent; 3)weakly hereditary and idempotent.
first_indexed 2026-02-08T07:58:02Z
format Article
id admjournalluguniveduua-article-744
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:58:02Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-7442018-04-26T00:55:03Z Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators) Kashu, A. I. ring, module, lattice, preradical, closure operator, lattice of submodules, dense submodule, closed submodule 16D90, 16S90, 06B23 In this work the closure operators of a category of modules \(R\)-Mod are studied. Every closure operator \(C\) of \(R\)-Mod defines two functions \( \mathcal{F}_1^{C}\) and \(\mathcal{F}_2^{C}\), which  in every module \(M\) distinguish the set of \(C\)-dense submodules  \(\mathcal{F}_1^{C}(M)\) and the set of \(C\)-closed submodules \(\mathcal{F}_2^{C}(M)\). By means of these functions three types of closure operators are described: 1)weakly hereditary; 2)idempotent; 3)weakly hereditary and idempotent. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/744 Algebra and Discrete Mathematics; Vol 15, No 2 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/744/274 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle ring
module
lattice
preradical
closure operator
lattice of submodules
dense submodule
closed submodule
16D90
16S90
06B23
Kashu, A. I.
Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)
title Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)
title_full Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)
title_fullStr Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)
title_full_unstemmed Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)
title_short Closure operators in the categories of modules Part I (Weakly hereditary and idempotent operators)
title_sort closure operators in the categories of modules part i (weakly hereditary and idempotent operators)
topic ring
module
lattice
preradical
closure operator
lattice of submodules
dense submodule
closed submodule
16D90
16S90
06B23
topic_facet ring
module
lattice
preradical
closure operator
lattice of submodules
dense submodule
closed submodule
16D90
16S90
06B23
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/744
work_keys_str_mv AT kashuai closureoperatorsinthecategoriesofmodulespartiweaklyhereditaryandidempotentoperators