Free \((\ell r, rr)\)-dibands

We prove that varieties of \((\ell r, rr)\)-dibands and \((\ell n, rn)\)-dibands coincide and describe the structure of free \((\ell r, rr)\)-dibands. We also show that operations of an idempotent dimonoid with left (right) regular bands coincide, construct a new class of dimonoids and for such dimo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Zhuchok, Anatolii V.
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/749
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543162767507456
author Zhuchok, Anatolii V.
author_facet Zhuchok, Anatolii V.
author_sort Zhuchok, Anatolii V.
baseUrl_str
collection OJS
datestamp_date 2018-04-26T00:55:03Z
description We prove that varieties of \((\ell r, rr)\)-dibands and \((\ell n, rn)\)-dibands coincide and describe the structure of free \((\ell r, rr)\)-dibands. We also show that operations of an idempotent dimonoid with left (right) regular bands coincide, construct a new class of dimonoids and for such dimonoids give an example of a semiretraction.
first_indexed 2026-02-08T07:58:51Z
format Article
id admjournalluguniveduua-article-749
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:58:51Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-7492018-04-26T00:55:03Z Free \((\ell r, rr)\)-dibands Zhuchok, Anatolii V. left (right) regular band, \((\ell r, rr)\)-diband, diband of subdimonoids, dimonoid, semigroup 08B20, 20M10, 20M50, 17A30, 17A32 We prove that varieties of \((\ell r, rr)\)-dibands and \((\ell n, rn)\)-dibands coincide and describe the structure of free \((\ell r, rr)\)-dibands. We also show that operations of an idempotent dimonoid with left (right) regular bands coincide, construct a new class of dimonoids and for such dimonoids give an example of a semiretraction. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/749 Algebra and Discrete Mathematics; Vol 15, No 2 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/749/279 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle left (right) regular band
\((\ell r
rr)\)-diband
diband of subdimonoids
dimonoid
semigroup
08B20
20M10
20M50
17A30
17A32
Zhuchok, Anatolii V.
Free \((\ell r, rr)\)-dibands
title Free \((\ell r, rr)\)-dibands
title_full Free \((\ell r, rr)\)-dibands
title_fullStr Free \((\ell r, rr)\)-dibands
title_full_unstemmed Free \((\ell r, rr)\)-dibands
title_short Free \((\ell r, rr)\)-dibands
title_sort free \((\ell r, rr)\)-dibands
topic left (right) regular band
\((\ell r
rr)\)-diband
diband of subdimonoids
dimonoid
semigroup
08B20
20M10
20M50
17A30
17A32
topic_facet left (right) regular band
\((\ell r
rr)\)-diband
diband of subdimonoids
dimonoid
semigroup
08B20
20M10
20M50
17A30
17A32
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/749
work_keys_str_mv AT zhuchokanatoliiv freeellrrrdibands