Free \((\ell r, rr)\)-dibands
We prove that varieties of \((\ell r, rr)\)-dibands and \((\ell n, rn)\)-dibands coincide and describe the structure of free \((\ell r, rr)\)-dibands. We also show that operations of an idempotent dimonoid with left (right) regular bands coincide, construct a new class of dimonoids and for such dimo...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Англійська |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/749 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| _version_ | 1856543162767507456 |
|---|---|
| author | Zhuchok, Anatolii V. |
| author_facet | Zhuchok, Anatolii V. |
| author_sort | Zhuchok, Anatolii V. |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2018-04-26T00:55:03Z |
| description | We prove that varieties of \((\ell r, rr)\)-dibands and \((\ell n, rn)\)-dibands coincide and describe the structure of free \((\ell r, rr)\)-dibands. We also show that operations of an idempotent dimonoid with left (right) regular bands coincide, construct a new class of dimonoids and for such dimonoids give an example of a semiretraction. |
| first_indexed | 2026-02-08T07:58:51Z |
| format | Article |
| id | admjournalluguniveduua-article-749 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2026-02-08T07:58:51Z |
| publishDate | 2018 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-7492018-04-26T00:55:03Z Free \((\ell r, rr)\)-dibands Zhuchok, Anatolii V. left (right) regular band, \((\ell r, rr)\)-diband, diband of subdimonoids, dimonoid, semigroup 08B20, 20M10, 20M50, 17A30, 17A32 We prove that varieties of \((\ell r, rr)\)-dibands and \((\ell n, rn)\)-dibands coincide and describe the structure of free \((\ell r, rr)\)-dibands. We also show that operations of an idempotent dimonoid with left (right) regular bands coincide, construct a new class of dimonoids and for such dimonoids give an example of a semiretraction. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/749 Algebra and Discrete Mathematics; Vol 15, No 2 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/749/279 Copyright (c) 2018 Algebra and Discrete Mathematics |
| spellingShingle | left (right) regular band \((\ell r rr)\)-diband diband of subdimonoids dimonoid semigroup 08B20 20M10 20M50 17A30 17A32 Zhuchok, Anatolii V. Free \((\ell r, rr)\)-dibands |
| title | Free \((\ell r, rr)\)-dibands |
| title_full | Free \((\ell r, rr)\)-dibands |
| title_fullStr | Free \((\ell r, rr)\)-dibands |
| title_full_unstemmed | Free \((\ell r, rr)\)-dibands |
| title_short | Free \((\ell r, rr)\)-dibands |
| title_sort | free \((\ell r, rr)\)-dibands |
| topic | left (right) regular band \((\ell r rr)\)-diband diband of subdimonoids dimonoid semigroup 08B20 20M10 20M50 17A30 17A32 |
| topic_facet | left (right) regular band \((\ell r rr)\)-diband diband of subdimonoids dimonoid semigroup 08B20 20M10 20M50 17A30 17A32 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/749 |
| work_keys_str_mv | AT zhuchokanatoliiv freeellrrrdibands |