On locally nilpotent derivations of Fermat rings
Let \(B_n^m =\frac{\mathbb{C}[X_1,\ldots, X_n]}{(X_1^m+\cdots +X_n^m)}\) (Fermat ring), where \(m\geq2\) and \(n\geq3\). In a recent paper D. Fiston and S. Maubach show that for \(m\geq n^2-2n\) the unique locally nilpotent derivation of \(B_n^m\) is the zero derivation. In this note we prove th...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | Англійська |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/752 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| _version_ | 1856543040113475584 |
|---|---|
| author | Brumatti, Paulo Roberto Veloso, Marcelo Oliveira |
| author_facet | Brumatti, Paulo Roberto Veloso, Marcelo Oliveira |
| author_sort | Brumatti, Paulo Roberto |
| baseUrl_str | |
| collection | OJS |
| datestamp_date | 2018-04-26T01:26:05Z |
| description | Let \(B_n^m =\frac{\mathbb{C}[X_1,\ldots, X_n]}{(X_1^m+\cdots +X_n^m)}\) (Fermat ring), where \(m\geq2\) and \(n\geq3\). In a recent paper D. Fiston and S. Maubach show that for \(m\geq n^2-2n\) the unique locally nilpotent derivation of \(B_n^m\) is the zero derivation. In this note we prove that the ring \(B_n^2\) has non-zero irreducible locally nilpotent derivations, which are explicitly presented, and that its ML-invariant is \(\mathbb{C}\). |
| first_indexed | 2025-12-02T15:40:54Z |
| format | Article |
| id | admjournalluguniveduua-article-752 |
| institution | Algebra and Discrete Mathematics |
| language | English |
| last_indexed | 2025-12-02T15:40:54Z |
| publishDate | 2018 |
| publisher | Lugansk National Taras Shevchenko University |
| record_format | ojs |
| spelling | admjournalluguniveduua-article-7522018-04-26T01:26:05Z On locally nilpotent derivations of Fermat rings Brumatti, Paulo Roberto Veloso, Marcelo Oliveira Locally Nilpotente Derivations, ML-invariant, Fermat ring 14R10, 13N15, 13A50 Let \(B_n^m =\frac{\mathbb{C}[X_1,\ldots, X_n]}{(X_1^m+\cdots +X_n^m)}\) (Fermat ring), where \(m\geq2\) and \(n\geq3\). In a recent paper D. Fiston and S. Maubach show that for \(m\geq n^2-2n\) the unique locally nilpotent derivation of \(B_n^m\) is the zero derivation. In this note we prove that the ring \(B_n^2\) has non-zero irreducible locally nilpotent derivations, which are explicitly presented, and that its ML-invariant is \(\mathbb{C}\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/752 Algebra and Discrete Mathematics; Vol 16, No 1 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/752/281 Copyright (c) 2018 Algebra and Discrete Mathematics |
| spellingShingle | Locally Nilpotente Derivations ML-invariant Fermat ring 14R10 13N15 13A50 Brumatti, Paulo Roberto Veloso, Marcelo Oliveira On locally nilpotent derivations of Fermat rings |
| title | On locally nilpotent derivations of Fermat rings |
| title_full | On locally nilpotent derivations of Fermat rings |
| title_fullStr | On locally nilpotent derivations of Fermat rings |
| title_full_unstemmed | On locally nilpotent derivations of Fermat rings |
| title_short | On locally nilpotent derivations of Fermat rings |
| title_sort | on locally nilpotent derivations of fermat rings |
| topic | Locally Nilpotente Derivations ML-invariant Fermat ring 14R10 13N15 13A50 |
| topic_facet | Locally Nilpotente Derivations ML-invariant Fermat ring 14R10 13N15 13A50 |
| url | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/752 |
| work_keys_str_mv | AT brumattipauloroberto onlocallynilpotentderivationsoffermatrings AT velosomarcelooliveira onlocallynilpotentderivationsoffermatrings |