Labelling matrices and index matrices of a graph structure

The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol 3, No.2, Dec 2006, 65-123.  Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Dinesh, T., Ramakrishnan, T. V.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/754
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-754
record_format ojs
spelling admjournalluguniveduua-article-7542018-04-26T01:26:05Z Labelling matrices and index matrices of a graph structure Dinesh, T. Ramakrishnan, T. V. Graph structure, \(R_{i}\)-labelling, \(R_{i}\)-index vector, admissible \(R_{i}\)-index vector, labelling matrix, index matrix, admissible index matrix 05C07,05C78 The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol 3, No.2, Dec 2006, 65-123.  Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J. Combin. Theory, Ser. B30 (1981), 290-301) proved that the collection of all admissible index vectors and the collection of all labellings for \(0\) form free \(F\)-modules (\(F\) is a commutative ring).  We have obtained similar results on graph structures in a previous paper. In the present paper, we introduce labelling matrices and index matrices of graph structures and prove that the collection of all admissible index matrices and the collection of all labelling matrices for \(0\) form free \(F\)-modules.  We also find their ranks in various cases of bipartition and char \(F\) (equal to 2 and not equal to 2). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/754 Algebra and Discrete Mathematics; Vol 16, No 1 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/754/283 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T01:26:05Z
collection OJS
language English
topic Graph structure
\(R_{i}\)-labelling
\(R_{i}\)-index vector
admissible \(R_{i}\)-index vector
labelling matrix
index matrix
admissible index matrix
05C07,05C78
spellingShingle Graph structure
\(R_{i}\)-labelling
\(R_{i}\)-index vector
admissible \(R_{i}\)-index vector
labelling matrix
index matrix
admissible index matrix
05C07,05C78
Dinesh, T.
Ramakrishnan, T. V.
Labelling matrices and index matrices of a graph structure
topic_facet Graph structure
\(R_{i}\)-labelling
\(R_{i}\)-index vector
admissible \(R_{i}\)-index vector
labelling matrix
index matrix
admissible index matrix
05C07,05C78
format Article
author Dinesh, T.
Ramakrishnan, T. V.
author_facet Dinesh, T.
Ramakrishnan, T. V.
author_sort Dinesh, T.
title Labelling matrices and index matrices of a graph structure
title_short Labelling matrices and index matrices of a graph structure
title_full Labelling matrices and index matrices of a graph structure
title_fullStr Labelling matrices and index matrices of a graph structure
title_full_unstemmed Labelling matrices and index matrices of a graph structure
title_sort labelling matrices and index matrices of a graph structure
description The concept of graph structure was introduced by E. Sampathkumar in 'Generalised Graph Structures', Bull. Kerala Math. Assoc., Vol 3, No.2, Dec 2006, 65-123.  Based on the works of Brouwer, Doob and Stewart, R.H. Jeurissen has ('The Incidence Matrix and Labelings of a Graph', J. Combin. Theory, Ser. B30 (1981), 290-301) proved that the collection of all admissible index vectors and the collection of all labellings for \(0\) form free \(F\)-modules (\(F\) is a commutative ring).  We have obtained similar results on graph structures in a previous paper. In the present paper, we introduce labelling matrices and index matrices of graph structures and prove that the collection of all admissible index matrices and the collection of all labelling matrices for \(0\) form free \(F\)-modules.  We also find their ranks in various cases of bipartition and char \(F\) (equal to 2 and not equal to 2).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/754
work_keys_str_mv AT dinesht labellingmatricesandindexmatricesofagraphstructure
AT ramakrishnantv labellingmatricesandindexmatricesofagraphstructure
first_indexed 2025-12-02T15:36:55Z
last_indexed 2025-12-02T15:36:55Z
_version_ 1850411388359409664