Inverse semigroups generated by group congruences. The Möbius functions

The computation of the Möbius function of a Möbius category that arises from a combinatorial inverse semigroup has a distinctive feature. This computation is done on the field of finite posets. In the case of two combinatorial inverse semigroups, order isomorphisms between corresponding finite poset...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Schwab, Emil Daniel
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/761
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543216212377600
author Schwab, Emil Daniel
author_facet Schwab, Emil Daniel
author_sort Schwab, Emil Daniel
baseUrl_str
collection OJS
datestamp_date 2018-04-26T01:26:05Z
description The computation of the Möbius function of a Möbius category that arises from a combinatorial inverse semigroup has a distinctive feature. This computation is done on the field of finite posets. In the case of two combinatorial inverse semigroups, order isomorphisms between corresponding finite posets reduce the computation to one of the semigroups. Starting with a combinatorial inverse monoid and using a group congruence we construct a combinatorial inverse semigroup such that the Möbius function becomes an invariant to this construction. For illustration, we consider the multiplicative analogue of the bicyclic semigroup and the free monogenic inverse monoid.
first_indexed 2025-12-02T15:40:55Z
format Article
id admjournalluguniveduua-article-761
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:40:55Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-7612018-04-26T01:26:05Z Inverse semigroups generated by group congruences. The Möbius functions Schwab, Emil Daniel combinatorial inverse semigroup, group congruence, Möbius function, Möbius category 20M18, 06A07 The computation of the Möbius function of a Möbius category that arises from a combinatorial inverse semigroup has a distinctive feature. This computation is done on the field of finite posets. In the case of two combinatorial inverse semigroups, order isomorphisms between corresponding finite posets reduce the computation to one of the semigroups. Starting with a combinatorial inverse monoid and using a group congruence we construct a combinatorial inverse semigroup such that the Möbius function becomes an invariant to this construction. For illustration, we consider the multiplicative analogue of the bicyclic semigroup and the free monogenic inverse monoid. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/761 Algebra and Discrete Mathematics; Vol 16, No 1 (2013) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/761/290 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle combinatorial inverse semigroup
group congruence
Möbius function
Möbius category
20M18
06A07
Schwab, Emil Daniel
Inverse semigroups generated by group congruences. The Möbius functions
title Inverse semigroups generated by group congruences. The Möbius functions
title_full Inverse semigroups generated by group congruences. The Möbius functions
title_fullStr Inverse semigroups generated by group congruences. The Möbius functions
title_full_unstemmed Inverse semigroups generated by group congruences. The Möbius functions
title_short Inverse semigroups generated by group congruences. The Möbius functions
title_sort inverse semigroups generated by group congruences. the möbius functions
topic combinatorial inverse semigroup
group congruence
Möbius function
Möbius category
20M18
06A07
topic_facet combinatorial inverse semigroup
group congruence
Möbius function
Möbius category
20M18
06A07
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/761
work_keys_str_mv AT schwabemildaniel inversesemigroupsgeneratedbygroupcongruencesthemobiusfunctions