On action of outer derivations on nilpotent ideals of Lie algebras

Action of outer derivations on nilpotent ideals of Lie algebras are considered.  It is shown that for a nilpotent ideal \(I\) of a Lie algebra \(L\) over a field \(F\) the ideal \(I+D(I)\) is nilpotent, provided that \(charF=0\) or \(I\)  nilpotent of nilpotency class less than \(p-1\), where \(p=ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Maksimenko, Dmitriy V.
Format: Artikel
Sprache:Englisch
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/770
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
_version_ 1856543317559345152
author Maksimenko, Dmitriy V.
author_facet Maksimenko, Dmitriy V.
author_sort Maksimenko, Dmitriy V.
baseUrl_str
collection OJS
datestamp_date 2018-04-04T08:31:48Z
description Action of outer derivations on nilpotent ideals of Lie algebras are considered.  It is shown that for a nilpotent ideal \(I\) of a Lie algebra \(L\) over a field \(F\) the ideal \(I+D(I)\) is nilpotent, provided that \(charF=0\) or \(I\)  nilpotent of nilpotency class less than \(p-1\), where \(p=char F\). In particular, the sum \(N(L)\) of all nilpotent ideals of a Lie algebra \(L\) is a characteristic ideal, if \(charF=0\) or \(N(L)\) is  nilpotent  of  class less than \(p-1\), where \(p=char F\).
first_indexed 2025-12-02T15:27:50Z
format Article
id admjournalluguniveduua-article-770
institution Algebra and Discrete Mathematics
language English
last_indexed 2025-12-02T15:27:50Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-7702018-04-04T08:31:48Z On action of outer derivations on nilpotent ideals of Lie algebras Maksimenko, Dmitriy V. Lie algebra, derivation, solvable radical, nilpotent ideal 17B40 Action of outer derivations on nilpotent ideals of Lie algebras are considered.  It is shown that for a nilpotent ideal \(I\) of a Lie algebra \(L\) over a field \(F\) the ideal \(I+D(I)\) is nilpotent, provided that \(charF=0\) or \(I\)  nilpotent of nilpotency class less than \(p-1\), where \(p=char F\). In particular, the sum \(N(L)\) of all nilpotent ideals of a Lie algebra \(L\) is a characteristic ideal, if \(charF=0\) or \(N(L)\) is  nilpotent  of  class less than \(p-1\), where \(p=char F\). Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/770 Algebra and Discrete Mathematics; Vol 8, No 1 (2009) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/770/300 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle Lie algebra
derivation
solvable radical
nilpotent ideal
17B40
Maksimenko, Dmitriy V.
On action of outer derivations on nilpotent ideals of Lie algebras
title On action of outer derivations on nilpotent ideals of Lie algebras
title_full On action of outer derivations on nilpotent ideals of Lie algebras
title_fullStr On action of outer derivations on nilpotent ideals of Lie algebras
title_full_unstemmed On action of outer derivations on nilpotent ideals of Lie algebras
title_short On action of outer derivations on nilpotent ideals of Lie algebras
title_sort on action of outer derivations on nilpotent ideals of lie algebras
topic Lie algebra
derivation
solvable radical
nilpotent ideal
17B40
topic_facet Lie algebra
derivation
solvable radical
nilpotent ideal
17B40
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/770
work_keys_str_mv AT maksimenkodmitriyv onactionofouterderivationsonnilpotentidealsofliealgebras