A variant of the primitive element theorem for separable extensions of a commutative ring

In this article we show that any strongly separable extension of a commutative ring \(R\) can be embedded into another one having primitive element whenever every boolean localization of  \(R\) modulo its Jacobson radical is von Neumann regular and locally uniform.

Saved in:
Bibliographic Details
Date:2018
Main Authors: Bagio, Dirceu, Paques, Antonio
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/784
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-784
record_format ojs
spelling admjournalluguniveduua-article-7842018-04-04T08:43:10Z A variant of the primitive element theorem for separable extensions of a commutative ring Bagio, Dirceu Paques, Antonio primitive element, separable extension, boolean localization 13B05, 12F10 In this article we show that any strongly separable extension of a commutative ring \(R\) can be embedded into another one having primitive element whenever every boolean localization of  \(R\) modulo its Jacobson radical is von Neumann regular and locally uniform. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/784 Algebra and Discrete Mathematics; Vol 8, No 3 (2009) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/784/314 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T08:43:10Z
collection OJS
language English
topic primitive element
separable extension
boolean localization
13B05
12F10
spellingShingle primitive element
separable extension
boolean localization
13B05
12F10
Bagio, Dirceu
Paques, Antonio
A variant of the primitive element theorem for separable extensions of a commutative ring
topic_facet primitive element
separable extension
boolean localization
13B05
12F10
format Article
author Bagio, Dirceu
Paques, Antonio
author_facet Bagio, Dirceu
Paques, Antonio
author_sort Bagio, Dirceu
title A variant of the primitive element theorem for separable extensions of a commutative ring
title_short A variant of the primitive element theorem for separable extensions of a commutative ring
title_full A variant of the primitive element theorem for separable extensions of a commutative ring
title_fullStr A variant of the primitive element theorem for separable extensions of a commutative ring
title_full_unstemmed A variant of the primitive element theorem for separable extensions of a commutative ring
title_sort variant of the primitive element theorem for separable extensions of a commutative ring
description In this article we show that any strongly separable extension of a commutative ring \(R\) can be embedded into another one having primitive element whenever every boolean localization of  \(R\) modulo its Jacobson radical is von Neumann regular and locally uniform.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/784
work_keys_str_mv AT bagiodirceu avariantoftheprimitiveelementtheoremforseparableextensionsofacommutativering
AT paquesantonio avariantoftheprimitiveelementtheoremforseparableextensionsofacommutativering
AT bagiodirceu variantoftheprimitiveelementtheoremforseparableextensionsofacommutativering
AT paquesantonio variantoftheprimitiveelementtheoremforseparableextensionsofacommutativering
first_indexed 2025-12-02T15:44:57Z
last_indexed 2025-12-02T15:44:57Z
_version_ 1850411893990096896