The central polynomials for the finite dimensional Grassmann algebras

In this note we describe the central polynomials for the finite dimensional unitary Grassmann algebras \(G_k\) over an infinite field \(F\) of characteristic \(\ne 2\). We exhibit a set of generators of \(C(G_k)\),  the T-space of the central polynomials of \(G_k\) in a free associative \(F\)-algebr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Koshlukov, Plamen, Krasilnikov, Alexei, da Silva, Elida Alves
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/788
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-788
record_format ojs
spelling admjournalluguniveduua-article-7882018-04-04T08:43:10Z The central polynomials for the finite dimensional Grassmann algebras Koshlukov, Plamen Krasilnikov, Alexei da Silva, Elida Alves polynomial identities, central polynomials, Grassmann algebra 16R10 In this note we describe the central polynomials for the finite dimensional unitary Grassmann algebras \(G_k\) over an infinite field \(F\) of characteristic \(\ne 2\). We exhibit a set of generators of \(C(G_k)\),  the T-space of the central polynomials of \(G_k\) in a free associative \(F\)-algebra. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/788 Algebra and Discrete Mathematics; Vol 8, No 3 (2009) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/788/318 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T08:43:10Z
collection OJS
language English
topic polynomial identities
central polynomials
Grassmann algebra
16R10
spellingShingle polynomial identities
central polynomials
Grassmann algebra
16R10
Koshlukov, Plamen
Krasilnikov, Alexei
da Silva, Elida Alves
The central polynomials for the finite dimensional Grassmann algebras
topic_facet polynomial identities
central polynomials
Grassmann algebra
16R10
format Article
author Koshlukov, Plamen
Krasilnikov, Alexei
da Silva, Elida Alves
author_facet Koshlukov, Plamen
Krasilnikov, Alexei
da Silva, Elida Alves
author_sort Koshlukov, Plamen
title The central polynomials for the finite dimensional Grassmann algebras
title_short The central polynomials for the finite dimensional Grassmann algebras
title_full The central polynomials for the finite dimensional Grassmann algebras
title_fullStr The central polynomials for the finite dimensional Grassmann algebras
title_full_unstemmed The central polynomials for the finite dimensional Grassmann algebras
title_sort central polynomials for the finite dimensional grassmann algebras
description In this note we describe the central polynomials for the finite dimensional unitary Grassmann algebras \(G_k\) over an infinite field \(F\) of characteristic \(\ne 2\). We exhibit a set of generators of \(C(G_k)\),  the T-space of the central polynomials of \(G_k\) in a free associative \(F\)-algebra.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/788
work_keys_str_mv AT koshlukovplamen thecentralpolynomialsforthefinitedimensionalgrassmannalgebras
AT krasilnikovalexei thecentralpolynomialsforthefinitedimensionalgrassmannalgebras
AT dasilvaelidaalves thecentralpolynomialsforthefinitedimensionalgrassmannalgebras
AT koshlukovplamen centralpolynomialsforthefinitedimensionalgrassmannalgebras
AT krasilnikovalexei centralpolynomialsforthefinitedimensionalgrassmannalgebras
AT dasilvaelidaalves centralpolynomialsforthefinitedimensionalgrassmannalgebras
first_indexed 2025-12-02T15:27:56Z
last_indexed 2025-12-02T15:27:56Z
_version_ 1850410822753320960