On the genus of the annhilator graph of a commutative ring

Let \(R\) be a commutative ring and \(Z(R)^*\) be its set of non-zero zero-divisors. The annihilator graph of a commutative ring \(R\) is the simple undirected graph \(\operatorname{AG}(R)\) with vertices \(Z(R)^*\), and two distinct vertices \(x\) and \(y\) are adjacent if and only if \(\operatorna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Tamizh Chelvam, T., Selvakumar, K.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/79
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id admjournalluguniveduua-article-79
record_format ojs
spelling admjournalluguniveduua-article-792018-04-26T02:43:18Z On the genus of the annhilator graph of a commutative ring Tamizh Chelvam, T. Selvakumar, K. commutative ring, annihilator graph, genus, planar, local rings 05C99, 05C15, 13A99 Let \(R\) be a commutative ring and \(Z(R)^*\) be its set of non-zero zero-divisors. The annihilator graph of a commutative ring \(R\) is the simple undirected graph \(\operatorname{AG}(R)\) with vertices \(Z(R)^*\), and two distinct vertices \(x\) and \(y\) are adjacent if and only if \(\operatorname{ann}(xy)\neq \operatorname{ann}(x)\cup \operatorname{ann}(y)\). The notion of annihilator graph has been introduced and studied by A. Badawi [7]. In this paper, we determine isomorphism classes of finite commutative rings with identity whose \(\operatorname{AG}(R)\) has genus less or equal to one. Lugansk National Taras Shevchenko University 2018-01-24 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/79 Algebra and Discrete Mathematics; Vol 24, No 2 (2017) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/79/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/79/56 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T02:43:18Z
collection OJS
language English
topic commutative ring
annihilator graph
genus
planar
local rings
05C99
05C15
13A99
spellingShingle commutative ring
annihilator graph
genus
planar
local rings
05C99
05C15
13A99
Tamizh Chelvam, T.
Selvakumar, K.
On the genus of the annhilator graph of a commutative ring
topic_facet commutative ring
annihilator graph
genus
planar
local rings
05C99
05C15
13A99
format Article
author Tamizh Chelvam, T.
Selvakumar, K.
author_facet Tamizh Chelvam, T.
Selvakumar, K.
author_sort Tamizh Chelvam, T.
title On the genus of the annhilator graph of a commutative ring
title_short On the genus of the annhilator graph of a commutative ring
title_full On the genus of the annhilator graph of a commutative ring
title_fullStr On the genus of the annhilator graph of a commutative ring
title_full_unstemmed On the genus of the annhilator graph of a commutative ring
title_sort on the genus of the annhilator graph of a commutative ring
description Let \(R\) be a commutative ring and \(Z(R)^*\) be its set of non-zero zero-divisors. The annihilator graph of a commutative ring \(R\) is the simple undirected graph \(\operatorname{AG}(R)\) with vertices \(Z(R)^*\), and two distinct vertices \(x\) and \(y\) are adjacent if and only if \(\operatorname{ann}(xy)\neq \operatorname{ann}(x)\cup \operatorname{ann}(y)\). The notion of annihilator graph has been introduced and studied by A. Badawi [7]. In this paper, we determine isomorphism classes of finite commutative rings with identity whose \(\operatorname{AG}(R)\) has genus less or equal to one.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/79
work_keys_str_mv AT tamizhchelvamt onthegenusoftheannhilatorgraphofacommutativering
AT selvakumark onthegenusoftheannhilatorgraphofacommutativering
first_indexed 2025-12-02T15:32:40Z
last_indexed 2025-12-02T15:32:40Z
_version_ 1850412235186241536