Characterization of regular convolutions

A convolution is a mapping \(\mathcal{C}\) of the set \(Z^{+}\) of positive integers into the set \({\mathscr{P}}(Z^{+})\) of all subsets of \(Z^{+}\) such that, for any \(n\in Z^{+}\), each member of \(\mathcal{C}(n)\) is a divisor of \(n\). If \(\mathcal{D}(n)\) is the set of all divisors of \(n\)...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Sagi, Sankar
Формат: Стаття
Мова:Англійська
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/80
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
_version_ 1856543166180622336
author Sagi, Sankar
author_facet Sagi, Sankar
author_sort Sagi, Sankar
baseUrl_str
collection OJS
datestamp_date 2018-05-17T07:54:05Z
description A convolution is a mapping \(\mathcal{C}\) of the set \(Z^{+}\) of positive integers into the set \({\mathscr{P}}(Z^{+})\) of all subsets of \(Z^{+}\) such that, for any \(n\in Z^{+}\), each member of \(\mathcal{C}(n)\) is a divisor of \(n\). If \(\mathcal{D}(n)\) is the set of all divisors of \(n\), for any \(n\), then \(\mathcal{D}\) is called the Dirichlet's convolution [2]. If \(\mathcal{U}(n)\) is the set of all Unitary(square free) divisors of \(n\), for any \(n\), then \(\mathcal{U}\) is called unitary(square free) convolution. Corresponding to any general convolution \(\mathcal{C}\), we can define a binary relation \(\leq_{\mathcal{C}}\) on \(Z^{+}\) by `\(m\leq_{\mathcal{C}}n\) if and only if \( m\in \mathcal{C}(n)\)'. In this paper, we present a characterization of regular convolution.
first_indexed 2026-02-08T07:58:06Z
format Article
id admjournalluguniveduua-article-80
institution Algebra and Discrete Mathematics
language English
last_indexed 2026-02-08T07:58:06Z
publishDate 2018
publisher Lugansk National Taras Shevchenko University
record_format ojs
spelling admjournalluguniveduua-article-802018-05-17T07:54:05Z Characterization of regular convolutions Sagi, Sankar semilattice, lattice, convolution, multiplicative, co-maximal, prime filter, cover, regular convolution 06B10,11A99 A convolution is a mapping \(\mathcal{C}\) of the set \(Z^{+}\) of positive integers into the set \({\mathscr{P}}(Z^{+})\) of all subsets of \(Z^{+}\) such that, for any \(n\in Z^{+}\), each member of \(\mathcal{C}(n)\) is a divisor of \(n\). If \(\mathcal{D}(n)\) is the set of all divisors of \(n\), for any \(n\), then \(\mathcal{D}\) is called the Dirichlet's convolution [2]. If \(\mathcal{U}(n)\) is the set of all Unitary(square free) divisors of \(n\), for any \(n\), then \(\mathcal{U}\) is called unitary(square free) convolution. Corresponding to any general convolution \(\mathcal{C}\), we can define a binary relation \(\leq_{\mathcal{C}}\) on \(Z^{+}\) by `\(m\leq_{\mathcal{C}}n\) if and only if \( m\in \mathcal{C}(n)\)'. In this paper, we present a characterization of regular convolution. Lugansk National Taras Shevchenko University 2018-04-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/80 Algebra and Discrete Mathematics; Vol 25, No 1 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/80/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/80/119 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/80/120 Copyright (c) 2018 Algebra and Discrete Mathematics
spellingShingle semilattice
lattice
convolution
multiplicative
co-maximal
prime filter
cover
regular convolution
06B10,11A99
Sagi, Sankar
Characterization of regular convolutions
title Characterization of regular convolutions
title_full Characterization of regular convolutions
title_fullStr Characterization of regular convolutions
title_full_unstemmed Characterization of regular convolutions
title_short Characterization of regular convolutions
title_sort characterization of regular convolutions
topic semilattice
lattice
convolution
multiplicative
co-maximal
prime filter
cover
regular convolution
06B10,11A99
topic_facet semilattice
lattice
convolution
multiplicative
co-maximal
prime filter
cover
regular convolution
06B10,11A99
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/80
work_keys_str_mv AT sagisankar characterizationofregularconvolutions