Minimal generating sets and Cayley graphs of Sylow \(p\)-subgroups of finite symmetric groups
Minimal generating sets of a Sylow \(p\)-subgroup \(P_n\) of the symmetric group \(S_{p^n}\) are characterized. The number of ordered minimal generating sets of \(P_n\) is calculated. The notion of the type of a generating set of \(P_n\) is introduced and it is proved that \(P_n\) contains minimal g...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/803 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Zusammenfassung: | Minimal generating sets of a Sylow \(p\)-subgroup \(P_n\) of the symmetric group \(S_{p^n}\) are characterized. The number of ordered minimal generating sets of \(P_n\) is calculated. The notion of the type of a generating set of \(P_n\) is introduced and it is proved that \(P_n\) contains minimal generating sets of all possible type. The isomorphism problem of Cayley graphs of \(P_n\) with respect to their minimal generating sets is discussed. |
|---|